922 resultados para B. Powder metallurgy
Resumo:
Coupled substitution of Nb(V) and Si(IV) for Ti(IV) and P(V)/As(V) in KTiOP04 (KTP) and KTiOAsO4 (KTA) giving new series of nonlinear optical materials, KTi1-xNbxOX1-xSixO4 (X=P,As), has been investigated. Substitution up to x = 0.40 readily occurs, the members retaining the orthorhombic (Pna2(1)) structure of KTP. The second harmonic generation (SHG) property of the parent KTP and KTA is not adversely affected by the coupled substitution. SHG intensity of the powder samples of the X = P series shows a slight increase with x up to x = 0.15; for 0.15 < x less-than-or-equal-to 0.40, there is a decrease in SHG intensity as compared to that for KTP. A similar trend in SHG intensity is seen for the arsenic analogs.
Resumo:
Grinding media wear appears to be non-linear with the time of grinding in a laboratory-scale ball mill. The kinetics of wear can be expressed as a power law of the type w=atb, where the numerical constant a represents wear of a particular microstructure at time t = 1 min and b is the wear exponent which is independent of the particle size prevailing inside a ball mill at any instant of time of grinding. The wear exponent appears to be an indicator of the cutting wear mechanism in dry grinding: a plot of the inverse of the normalised wear exponent (Image ) versusHs (where Hs is the worn surface hardness of the media) yields a curve similar to that of a wear resistance plot obtained in the case of two-body sliding abrasive wear. This method of evaluating the cutting wear resistance of media is demonstrated by employing 15 different microstructures of AISI-SAE 52100 steel balls in dry grinding of quartz in a laboratory-scale ball mill.
Resumo:
Epitaxial LaNiO3(LNO) thin films on LaAlO3(LAO), SrTiO3(STO), and YSZ are grown by pulsed laser deposition method at 350 mTorr oxygen partial pressure and 700 °C substrate temperature. As‐deposited LNO films are metallic down to 10 K. c‐axis oriented YBa2Cu3O7 (YBCO) films were grown on LNO/LAO as well as LNO/STO surfaces without affecting superconducting transition temperature of YBCO. Textured LNO thin films were grown on c‐axis oriented YBCO/STO and YBCO/YSZ . Transport measurements of these bilayer films showed that LNO is a good metallic contact material for YBCO.
Resumo:
We calculate the kaon B parameter in quenched lattice QCD at beta=6.0 using Wilson fermions at kappa=0.154 and 0.155. We use two kinds of nonlocal (''smeared'') sources for quark propagators to calculate the matrix elements between states of definite momentum. The use of smeared sources yields results with much smaller errors than obtained in previous calculations with Wilson fermions. By combining results for p=(0,0,0) and p=(0,0,1), we show that one can carry out the noperturbative subtraction necessary to remove the dominant lattice artifacts induced by the chiral-symmetry-breaking term in the Wilson action. Our final results are in good agreement with those obtained using staggered fermions. We also present results for B parameters of the DELTAI = 3/2 part of the electromagnetic penguin operators, and preliminary results for B(K) in the presence of two flavors of dynamical quarks.
Resumo:
The interactions between the polyene antibiotic amphotericin B with dipalmitoylphosphatidylcholine were investigated in vesicles (using circular dichroism) and in chloroform solution (using circular dichroism and IH, I3C, and 31P nuclear magnetic resonance). The results show that amphotericin B readily aggregates in vesicles and that the extent of aggregation depends on the 1ipid:drug concentration ratio. Introduction of sterol molecules into the membrane hastens the process of aggregation of amphotericin B. In chloroform solutions amphotericin B strongly interacts with phospholipid molecules to form a stoichiometric complex. The results suggest that there are interactions between the conjugated heptene stretch of amphotericin B and the methylene groups of lipid acyl chains, while the sugar moiety interacts with the phosphate head group by the formation of a hydrogen bond. A model is proposed for the lipid-amphotericin B complex, in which amphotericin B interacts equally well with the two lipid acyl chains, forming a 1:l complex.
Resumo:
(I)Lantadene-B: C35H52O5,M r =552.80, MonoclinicC2,a=25.65(1),b=6.819(9),c=18.75(1) Å,beta=100.61(9),V=3223(5) Å3,Z=4,D x =1.14 g cm–3 CuKagr (lambda=1.5418A),mgr=5.5 cm–1,F(000)=1208,R=0.118,wR=0.132 for 1527 observed reflections withF o ge2sgr(F o ). (II)Lantadene-C: C35H54O5·CH3OH,Mr=586.85, Monoclinic,P21,a=9.822(3),b=10.909(3),c=16.120(8)Å,beta=99.82(4),V=1702(1)Å3,Z=2,D x =1.145 g cm–3, MoKagr (lambda=0.7107Å), mgr=0.708 cm–1 F(000)=644,R=0.098, wR=0.094 for 1073 observed reflections. The rings A, B, C, D, and E aretrans, trans, trans, cis fused and are in chair, chair, sofa, half-chair, chair conformations, respectively, in both the structures. In the unit cell the molecules are stabilized by O-HctdotO hydrogen bonds in both the structures, however an additional C-HctdotO interaction is observed in the case of Lantadene-C.
Resumo:
The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.
Resumo:
For studying systems containing nitrogen, limited use of N-14 NMR spectroscopy has been made because of the large quadrupolar interaction experienced by the N-14 nucleus and the absence of a central transition. To overcome the above problem, use of overtone spectroscopy has been suggested. Though this approach has limited applicability for powder samples due to second order quadrupole broadening, it is useful for studying oriented samples and single crystals. Here, we demonstrate the use of the recently proposed dipolar assisted polarization transfer (DAPT) pulse scheme for exciting the overtone transitions. The pulse sequence may also be utilized as a two-dimensional experiment to obtain H-1-N-14 dipolar couplings and H-1 chemical shifts. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. Results: In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. Conclusions: Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique `template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.
Resumo:
A new delafossite oxide, AgLi1/3Ru2/3]O-2, synthesized by ion-exchanging interlayer-Li+ with Ag+ in layered Li2RuO3, is reported. The transformation of layered Li2RuO3 (monoclinic, space group C2/c) to AgLi1/3Ru2/3]O-2 possessing a delafossite structure (space group R (3) over barm) has been established with powder X-ray diffraction. The successful conversion of LiLi1/3Ru2/3]O-2 to AgLi1/3Ru2/3]O-2 is further confirmed by EDAX analysis. The diffuse reflectance spectrum of AgLi1/3Ru2/3]O-2 shows broad absorption in the UV-visible region suggesting its use as a photocatalyst. The photocatalytic activity of AgLi1/3Ru2/3]O-2 has been investigated by degrading various dyes. It showed significant photocatalytic activity for dye degradation both under UV and solar radiation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Texture development in commercially pure titanium during equal channel angular extrusion (ECAE) through Routes A, Be and C has been studied up to three passes at 400 C. Textures were measured using X-ray diffraction, while the microstructural analyses were performed using electron back-scattered diffraction as well as transmission electron microscopy. Occurrences of dynamic restoration processes (recovery and recrystallization) were clearly noticed at all levels of deformations. Finally, the textures were simulated using a viscoplastic polycrystal self-consistent (VPSC) model. Simulations were performed incorporating basal, prismatic and pyramidal slip systems as well as tensile and compressive twinning. The simulated textures corroborate well with experimental textures in spite of the occurrence of dynamic restoration processes. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The optimum values of the solution parameters of a multiparameter integral free-energy function have been determined using experimental data from the Ga-Sb system. The equation is represented as DELTAG(xs) = x(1 - x)[(1 - x)(a1 + a2T + a3T ln T) + x(a4 + a5T + a6T ln T) + x(1 - x)(a7 + a8T + a9xT)].The integral and the corresponding partial form of the free energy function have been found to be of use when interpreting the high temperature thermodynamic data, atomic interactions and phase equilibria in the Ga-Sb system.
Resumo:
The formal total synthesis of (+)-didemniserinolipid B, a marine tunicate possessing a 6,8-dioxabicyclo3.2.1]octane framework, was accomplished starting from L-(+)-tartaric acid. The key transformations in the synthesis include the elaboration of a gamma-hydroxy-amide readily obtained by desymmetrization of tartaric acid bis-amide via the controlled addition of a Grignard reagent followed by stereoselective reduction of the resulting ketone. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Strength and behaviour of cement stabilised rammed earth (CSRE) is a scantily explored area. The present study is focused on the strength and elastic properties of CSRE. Characteristics of CSRE are influenced by soil composition, density of rammed earth, cement and moisture content. The study is focused on examining (a) role of clay content of the soil on strength of CSRE and arriving at optimum clay fraction of the soil mix, (b) influence of moisture content, cement content and density on strength and (c) stress-strain relationships and elastic properties for CSRE. Major conclusions are (a) there is considerable difference between dry and wet compressive strength of CSRE and the wet to dry strength ratio depends upon the clay fraction of soil mix and cement content, (b) optimum clay fraction yielding maximum compressive strength for CSRE is about 16%, (c) strength of CSRE is highly sensitive to density and for a 20% increase in density the strength increases by 300-500% and (d) in dry state the ultimate strain at failure for CSRE is as high as 1.5%, which is unusual for brittle materials.