988 resultados para Architecture, Domestic.
Resumo:
An embedded architecture of optical vector matrix multiplier (OVMM) is presented. The embedded architecture is aimed at optimising the data flow of vector matrix multiplier (VMM) to promote its performance. Data dependence is discussed when the OVMM is connected to a cluster system. A simulator is built to analyse the performance according to the architecture. According to the simulation, Amdahl's law is used to analyse the hybrid opto-electronic system. It is found that the electronic part and its interaction with optical part form the bottleneck of system.
Resumo:
This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.
Resumo:
This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.
Resumo:
We present a layered architecture for secure e-commerce applications and protocols with fully automated dispute-resolution process, robust to communication failures and malicious faults. Our design is modular, with precise yet general-purpose interfaces and functionalities, and allows usage as an underlying secure service to different e-commerce, e-banking and other distributed systems. The interfaces support diverse, flexible and extensible payment scenarios and instruments, including direct buyer-seller payments as well as (the more common) indirect payments via payment service providers (e.g. banks). Our design is practical, efficient, and ensures reliability and security under realistic failure and delay conditions.
Resumo:
The K-best detector is considered as a promising technique in the MIMO-OFDM detection because of its good performance and low complexity. In this paper, a new K-best VLSI architecture is presented. In the proposed architecture, the metric computation units (MCUs) expand each surviving path only to its partial branches, based on the novel expansion scheme, which can predetermine the branches' ascending order by their local distances. Then a distributed sorter sorts out the new K surviving paths from the expanded branches in pipelines. Compared to the conventional K-best scheme, the proposed architecture can approximately reduce fundamental operations by 50% and 75% for the 16-QAM and the 64-QAM cases, respectively, and, consequently, lower the demand on the hardware resource significantly. Simulation results prove that the proposed architecture can achieve a performance very similar to conventional K-best detectors. Hence, it is an efficient solution to the K-best detector's VLSI implementation for high-throughput MIMO-OFDM systems.
Resumo:
This paper describes a special-purpose neural computing system for face identification. The system architecture and hardware implementation are introduced in detail. An algorithm based on biomimetic pattern recognition has been embedded. For the total 1200 tests for face identification, the false rejection rate is 3.7% and the false acceptance rate is 0.7%.
Resumo:
In this paper a new half-flash architecture for high speed video ADC is presented. Based on a high speed single-way analog switch circuit, this architecture effectively reduces the number of elements. At the same lime no sacrifice of speed is needed compared with the normal half-flash structure.
Resumo:
In this paper we introduce a new Half-flash analog switch ADC architecture. And we discuss two methods to design the values of the cascaded resistors which generate the reference voltages. Derailed analysis about the effect of analog switches and comparators on reference voltages, and the methods to set the resistor values and correspond;ng voltage errors are given.
Resumo:
The reactions of sodium p-sulfonatocalix[4]arene (Na5L) and terbium/europium(III) chloride in the presence of pyrazine-N,N'-dioxide (PNNO) in aqueous solutions gave the crystalline complexes 1 and 2. Both structures contain molecular capsules of p-sulfonatocalix[4] arene with PNNO as guest molecules in the cavity of the calix[4]arenes. The molecular capsules are connected through sodium and terbium (or europium) centers forming a three-dimensional framework.
Resumo:
In the presence of NH3-Ag+-NH3, the calix[4]arenes can be induced into dimeric nanocapsules, which can be used as building units constructing a 3D molecular architecture with the appropriate secondary ligands and metal ions.
Resumo:
Here we present a simple wet-chemical approach to synthesize flower-like silver nanostrip assembling architecture at room temperature. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images indicate that these microstructures with the diameter of similar to 500nm exhibit hietarchical characteristic. X-ray diffraction (XRD), energy-dispersed X-ray spectroscopy (EDX) and Raman spectroscopy indicate that poly (o-diaminobenzene) (PDB) also exists in the silver hierarchical microstructure.