865 resultados para Ant-based algorithm
Resumo:
This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, vegetation,. and fallow regions). The road regions are then extracted using the normalized cuts algorithm. Normalized cuts algorithm is a graph-based partitioning `approach whose focus lies in extracting the global impression (perceptual grouping) of an image rather than local features. For the segmented image, post-processing is carried out using morphological operations - erosion and dilation. Finally, the road extracted image is overlaid on the original image. Here, a GPGPU (General Purpose Graphical Processing Unit) approach has been adopted to implement the same algorithm on the GPU for fast processing. A performance comparison of this proposed GPU implementation of normalized cuts algorithm with the earlier algorithm (CPU implementation) is presented. From the results, we conclude that the computational improvement in terms of time as the size of image increases for the proposed GPU implementation of normalized cuts. Also, a qualitative and quantitative assessment of the segmentation results has been projected.
Resumo:
In this work, we propose an algorithm for optical flow estimation using Approximate Nearest Neighbor Fields (ANNF). Proposed optical flow estimation algorithm consists of two steps, flow initialization using ANNF maps and cost filtering. Flow initialization is done by computing the ANNF map using FeatureMatch between two consecutive frames. The ANNF map obtained represents a noisy optical flow, which is refined by making use of superpixels. The best flow associated with each superpixel is computed by optimizing a cost function. The proposed approach is evaluated on Middlebury and MPI-Sintel optical flow dataset and is found to be comparable with the state of the art methods for optical flow estimation.
Resumo:
In this work, we have explored the prospect of segmenting crowd flow in H. 264 compressed videos by merely using motion vectors. The motion vectors are extracted by partially decoding the corresponding video sequence in the H. 264 compressed domain. The region of interest ie., crowd flow region is extracted and the motion vectors that spans the region of interest is preprocessed and a collective representation of the motion vectors for the entire video is obtained. The obtained motion vectors for the corresponding video is then clustered by using EM algorithm. Finally, the clusters which converges to a single flow are merged together based on the bhattacharya distance measure between the histogram of the of the orientation of the motion vectors at the boundaries of the clusters. We had implemented our proposed approach on the complex crowd flow dataset provided by 1] and compared our results by using Jaccard measure. Since we are performing crowd flow segmentation in the compressed domain using only motion vectors, our proposed approach performs much faster compared to other pixel domain counterparts still retaining better accuracy.
Resumo:
Representing images and videos in the form of compact codes has emerged as an important research interest in the vision community, in the context of web scale image/video search. Recently proposed Vector of Locally Aggregated Descriptors (VLAD), has been shown to outperform the existing retrieval techniques, while giving a desired compact representation. VLAD aggregates the local features of an image in the feature space. In this paper, we propose to represent the local features extracted from an image, as sparse codes over an over-complete dictionary, which is obtained by K-SVD based dictionary training algorithm. The proposed VLAD aggregates the residuals in the space of these sparse codes, to obtain a compact representation for the image. Experiments are performed over the `Holidays' database using SIFT features. The performance of the proposed method is compared with the original VLAD. The 4% increment in the mean average precision (mAP) indicates the better retrieval performance of the proposed sparse coding based VLAD.
Resumo:
3-Dimensional Diffuse Optical Tomographic (3-D DOT) image reconstruction algorithm is computationally complex and requires excessive matrix computations and thus hampers reconstruction in real time. In this paper, we present near real time 3D DOT image reconstruction that is based on Broyden approach for updating Jacobian matrix. The Broyden method simplifies the algorithm by avoiding re-computation of the Jacobian matrix in each iteration. We have developed CPU and heterogeneous CPU/GPU code for 3D DOT image reconstruction in C and MatLab programming platform. We have used Compute Unified Device Architecture (CUDA) programming framework and CUDA linear algebra library (CULA) to utilize the massively parallel computational power of GPUs (NVIDIA Tesla K20c). The computation time achieved for C program based implementation for a CPU/GPU system for 3 planes measurement and FEM mesh size of 19172 tetrahedral elements is 806 milliseconds for an iteration.
Quick, Decentralized, Energy-Efficient One-Shot Max Function Computation Using Timer-Based Selection
Resumo:
In several wireless sensor networks, it is of interest to determine the maximum of the sensor readings and identify the sensor responsible for it. We propose a novel, decentralized, scalable, energy-efficient, timer-based, one-shot max function computation (TMC) algorithm. In it, the sensor nodes do not transmit their readings in a centrally pre-defined sequence. Instead, the nodes are grouped into clusters, and computation occurs over two contention stages. First, the nodes in each cluster contend with each other using the timer scheme to transmit their reading to their cluster-heads. Thereafter, the cluster-heads use the timer scheme to transmit the highest sensor reading in their cluster to the fusion node. One new challenge is that the use of the timer scheme leads to collisions, which can make the algorithm fail. We optimize the algorithm to minimize the average time required to determine the maximum subject to a constraint on the probability that it fails to find the maximum. TMC significantly lowers average function computation time, average number of transmissions, and average energy consumption compared to approaches proposed in the literature.
Resumo:
Routing is a very important step in VLSI physical design. A set of nets are routed under delay and resource constraints in multi-net global routing. In this paper a delay-driven congestion-aware global routing algorithm is developed, which is a heuristic based method to solve a multi-objective NP-hard optimization problem. The proposed delay-driven Steiner tree construction method is of O(n(2) log n) complexity, where n is the number of terminal points and it provides n-approximation solution of the critical time minimization problem for a certain class of grid graphs. The existing timing-driven method (Hu and Sapatnekar, 2002) has a complexity O(n(4)) and is implemented on nets with small number of sinks. Next we propose a FPTAS Gradient algorithm for minimizing the total overflow. This is a concurrent approach considering all the nets simultaneously contrary to the existing approaches of sequential rip-up and reroute. The algorithms are implemented on ISPD98 derived benchmarks and the drastic reduction of overflow is observed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.
Resumo:
A new successive displacement type load flow method is developed in this paper. This algorithm differs from the conventional Y-Bus based Gauss Seidel load flow in that the voltages at each bus is updated in every iteration based on the exact solution of the power balance equation at that node instead of an approximate solution used by the Gauss Seidel method. It turns out that this modified implementation translates into only a marginal improvement in convergence behaviour for obtaining load flow solutions of interconnected systems. However it is demonstrated that the new approach can be adapted with some additional refinements in order to develop an effective load flow solution technique for radial systems. Numerical results considering a number of systems-both interconnected and radial, are provided to validate the proposed approach.
Resumo:
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
Resumo:
We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games, and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is convex and this leads to an efficient biobjective clustering algorithm that we call BiGC. The algorithm yields high-quality clustering with respect to average point-to-center distance (potential) as well as average intracluster point-to-point distance (scatter). We demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multiobjective techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark data sets. We also show that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.
Resumo:
We address the problem of separating a speech signal into its excitation and vocal-tract filter components, which falls within the framework of blind deconvolution. Typically, the excitation in case of voiced speech is assumed to be sparse and the vocal-tract filter stable. We develop an alternating l(p) - l(2) projections algorithm (ALPA) to perform deconvolution taking into account these constraints. The algorithm is iterative, and alternates between two solution spaces. The initialization is based on the standard linear prediction decomposition of a speech signal into an autoregressive filter and prediction residue. In every iteration, a sparse excitation is estimated by optimizing an l(p)-norm-based cost and the vocal-tract filter is derived as a solution to a standard least-squares minimization problem. We validate the algorithm on voiced segments of natural speech signals and show applications to epoch estimation. We also present comparisons with state-of-the-art techniques and show that ALPA gives a sparser impulse-like excitation, where the impulses directly denote the epochs or instants of significant excitation.
Resumo:
The time division multiple access (TDMA) based channel access mechanisms perform better than the contention based channel access mechanisms, in terms of channel utilization, reliability and power consumption, specially for high data rate applications in wireless sensor networks (WSNs). Most of the existing distributed TDMA scheduling techniques can be classified as either static or dynamic. The primary purpose of static TDMA scheduling algorithms is to improve the channel utilization by generating a schedule of smaller length. But, they usually take longer time to schedule, and hence, are not suitable for WSNs, in which the network topology changes dynamically. On the other hand, dynamic TDMA scheduling algorithms generate a schedule quickly, but they are not efficient in terms of generated schedule length. In this paper, we propose a novel scheme for TDMA scheduling in WSNs, which can generate a compact schedule similar to static scheduling algorithms, while its runtime performance can be matched with those of dynamic scheduling algorithms. Furthermore, the proposed distributed TDMA scheduling algorithm has the capability to trade-off schedule length with the time required to generate the schedule. This would allow the developers of WSNs, to tune the performance, as per the requirement of prevalent WSN applications, and the requirement to perform re-scheduling. Finally, the proposed TDMA scheduling is fault-tolerant to packet loss due to erroneous wireless channel. The algorithm has been simulated using the Castalia simulator to compare its performance with those of others in terms of generated schedule length and the time required to generate the TDMA schedule. Simulation results show that the proposed algorithm generates a compact schedule in a very less time.
Resumo:
Mobile Ad hoc Networks (MANETs) are self-organized, infrastructureless, decentralized wireless networks consist of a group of heterogeneous mobile devices. Due to the inherent characteristics of MANE -Ts, such as frequent change of topology, nodes mobility, resource scarcity, lack of central control, etc., makes QoS routing is the hardest task. QoS routing is the task of routing data packets from source to destination depending upon the QoS resource constraints, such as bandwidth, delay, packet loss rate, cost, etc. In this paper, we proposed a novel scheme of providing QoS routing in MANETs by using Emergent Intelligence (El). The El is a group intelligence, which is derived from the periodical interaction among a group of agents and nodes. We logically divide MANET into clusters by centrally located static agent, and in each cluster a mobile agent is deployed. The mobile agent interacts with the nodes, neighboring mobile agents and static agent for collection of QoS resource information, negotiations, finding secure and reliable nodes and finding an optimal QoS path from source to destination. Simulation and analytical results show that the effectiveness of the scheme. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.ore/licenscs/by-nc-nd/4.0/). Peer-review under responsibility of the Conference Program Chairs
Resumo:
The problem of cooperative beamforming for maximizing the achievable data rate of an energy constrained two-hop amplify-and-forward (AF) network is considered. Assuming perfect channel state information (CSI) of all the nodes, we evaluate the optimal scaling factor for the relay nodes. Along with individual power constraint on each of the relay nodes, we consider a weighted sum power constraint. The proposed iterative algorithm initially solves a set of relaxed problems with weighted sum power constraint and then updates the solution to accommodate individual constraints. These relaxed problems in turn are solved using a sequence of Quadratic Eigenvalue Problems (QEP). The key contribution of this letter is the generalization of cooperative beamforming to incorporate both the individual and weighted sum constraint. Furthermore, we have proposed a novel algorithm based on Quadratic Eigenvalue Problem (QEP) and discussed its convergence.