928 resultados para Adénovirus recombinant


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the polymerase chain reaction, the coding sequence for peanut agglutinin (PNA) was cloned and expressed in Escherichia coli. Amplified PNA is identical to previously reported cDNA, suggesting the absence of any introns in PNA gene. Recombinant (re-) PNA forms inclusion bodies in E. coli. Production of PNA was confirmed by probing Western blots with polyclonal anti-PNA immunoglobulin G. Inclusion bodies were solubilized with 6 M guanidine-HCl and renatured by rapid dilution in the presence of metal ions. The renatured lectin was then purified by affinity chromatography. The re-lectin shows carbohydrate-binding properties similar to the natural PNA. This expression system provides a model for future mutagenesis studies of the carbohydrate-binding site and thus facilitates ongoing efforts to explore the molecular basis for the specificity of lectin-carbohydrate interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiogeneesi on tärkeä ilmiö elimistön fysiologiassa, mutta myös lukuisissa patologisissa tiloissa. Angiogeneesi on monivaiheinen prosessi, joka sisältää angiogeneesiä indusoivia ja sitä inhiboivia tekijöitä tasapainossa keskenään. Useat tutkimukset puoltavat sitä, että tymosiini ȕ4 (Tȕ4) ja tetrapeptidi Ac-SDKP (N-asetyyliseryyli- aspartyyli-lysyyli-proliini) indusoivat angiogeneesiä in vitro ja in vivo. Tutkimukset viittaavat myös siihen, että prolyylioligopeptidaasi (POP) hydrolysoi peptidifragmentin Ac- SDKP Tȕ4:n (43 ah) proliinin jälkeen. POP on laajalti esiintyvä seriiniproteaasi, joka pystyy pilkkomaan vain alle 30 aminohapon oligopeptidejä. Tȕ4:n tulee siksi pilkkoutua ensin jonkin, vielä tuntemattoman peptidaasin johdosta. POP:ia on löydetty eniten aivoista, minkä vuoksi sitä on tutkittu varsinkin muistin ja oppimisen häiriötiloissa sekä neurodegeneratiivisten sairausten yhteydessä. POP:in todellinen fysiologinen merkitys on kuitenkin vielä selvittämättä. Tämän pro gradun kirjallisuusosiossa selvitetään angiogeneesiin liittyvien tekijöiden yhteyksiä sekä kuvataan angiogeenisten Tȕ4:n, Ac-SDKP:n ja POP:in ominaisuuksia, esiintymistä ja toimintaa. Kokeellisen osion tarkoituksena oli osoittaa, osallistuvatko POP ja Tȕ4 tetrapeptidin Ac-SDKP muodostumiseen ja kapillaarimuodostumiseen ja edelleen, voidaanko POPaktiivisuutta, tetrapeptidi- ja kapillaarimuodostumista estää spesifisellä POP-inhibiittorilla, KYP-2047:llä. Kokeellinen osa oli kaksiosainen. Ensimmäisessä osassa tutkittiin POPaktiivisuutta ja suoritettiin Ac-SDKP –pitoisuusmittauksia ajanjaksolla 0-180 min Wistarkannan rotista tehdyillä homogenaateilla. Tutkimusryhminä olivat 0,1 ja 0,5 μM KYP-2047 (+2 μM Tȕ4), 1:20 (0,625 μM) humaaniperäinen rekombinantti-POP (+ 2 μM Tȕ4), 2 μM Tȕ4 (pos. kontrolli) ja raakahomogenaatti (neg. kontrolli). Toisessa osassa tutkittiin kapillaarimuodostumista ajanjaksolla 0-180 min humaaniperäisillä napanuoralaskimon primaariendoteelisoluilla MatrigelTM Matrix -päällystetyllä 48- kuoppalevyllä, jolle oli siirrostettu 50 000 solua/kuoppa. Naudan seerumilla ja antibiooteilla käsitellyt tutkimusryhmät olivat 5 ja 10 μM KYP-2047 (+4 μM Tȕ4), 1:20 (0,625 μM) humaaniperäinen rekombinantti-POP (+4 μM Tȕ4), 4 μM Tȕ4 (pos. kontrolli) ja DMEM (neg. kontrolli). Kuoppia inkuboitiin ja kapillaarimuodostuminen kuvattiin valomikroskoopilla digitaalikameralla. Kutakin tutkimusryhmää pipetoitiin kolmeen rinnakkaiseen kuoppaan ja kokeet toistettiin neljästi. Sulkeutuneiden kapillaarien lukumäärä laskettiin manuaalisesti ja tuloksista tehtiin tilastollinen analyysi. 7ȕ4:n ja POP:in havaittiin molempien osallistuvan tetrapeptidin AC-SDKP muodostumiseen munuaishomogenaateissa. Primaariendoteelisolut muodostivat selkeitä kapillaareja Matrigelilla, erityisesti POP- ja Tȕ4–ryhmissä. KYP-2047 inhiboi tehokkaasti POP:ia kaikissa kokeissa osoittautuen hyväksi antiangiogeeniseksi yhdisteeksi. Angiogeneesin mekanismien ja POP:in, Tȕ4:n ja Ac-SDKP:n yhteyksien selvittäminen vaatii luonnollisesti vielä lisätutkimuksia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) are important detoxification enzymes and they contribute to bioavailability and elimination of many drugs. SULT1A3 is an extrahepatic enzyme responsible for the sulfonation of dopamine, which is often used as its probe substrate. A new method for analyzing dopamine-3-O-sulfate and dopamine-4-O-sulfate by high-performance liquid chromatography was developed and the enzyme kinetic parameters for their formation were determined using purified recombinant human SULT1A3. The results show that SULT1A3 strongly favors the 3-hydroxy group of dopamine, which indicates that it may be the major enzyme responsible for the difference between the circulating levels of dopamine sulfates in human blood. All 19 known human UGTs were expressed as recombinant enzymes in baculovirus infected insect cells and their activities toward dopamine and estradiol were studied. UGT1A10 was identified as the only UGT capable of dopamine glucuronidation at a substantial level. The results were supported by studies with human intestinal and liver microsomes. The affinity was low indicating that UGT1A10 is not an important enzyme in dopamine metabolism in vivo. Despite the low affinity, dopamine is a potential new probe substrate for UGT1A10 due to its selectivity. Dopamine was used to study the importance of phenylalanines 90 and 93 in UGT1A10. The results revealed distinct effects that are dependent on differences in the size of the side chain and on the differences in their position within the protein. Examination of twelve mutants revealed lower activity in all of them. However, the enzyme kinetic studies of four mutants showed that their affinities were similar to that of UGT1A10 suggesting that F90 and F93 are not directly involved in dopamine binding in the active site. The glucuronidation of β-estradiol and epiestradiol (α-estradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. The results show that there are clear differences in the regio- and stereoselectivities of UGTs. The most active isoforms were UGT1A10 and UGT2B7 demonstrating opposite regioselectivity. The stereoselectivities of UGT2Bs were more complex than those of UGT1As. The amino acid sequences of the human UGTs 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. Several mutants were constructed to identify the residues responsible for the activity differences. The results revealed that the residues between Leu86 and Tyr176 of UGT1A9 determine the differences between UGT1A9 and UGT1A10. Phe117 of UGT1A9 participated in 1-naphthol binding and the residues at positions 152 and 169 contributed to the higher glucuronidation rates of UGT1A10. In summary, the results emphasize that the substrate selectivities, including regio- and stereoselectivities, of UGTs are complex and they are controlled by many amino acids rather than one critical residue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major limitations to the application of high-resolution biophysical techniques such as X-crystallography and spectroscopic analyses to structure-function studies of Saccharomyces cerevisiae Hop1 protein has been the non-availability of sufficient quantities of functionally active pure protein. This has, indeed, been the case of many proteins, including yeast synaptonemal complex proteins. In this study, we have performed expression screening in Escherichia coli host strains, capable of high-level expression of soluble S. cerevisiae Hop1 protein. A new protocol has been developed for expression and purification of S. cerevisiae Hop1 protein, based on the presence of hexa-histidine tag and double-stranded DNA-Cellulose chromatography. Recombinant S. cerevisiae Hop1 protein was >98% pure and exhibited DNA-binding activity with high-affinity to the Holliday junction. The availability of the recombinant HOP1 expression vector and active Hop1 protein would facilitate structure-function investigations as well as the generation of appropriate truncated and site-directed mutant proteins, respectively. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetyl-glucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. beta-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GlycodelinA (GdA), a multifunctional glycoprotein secreted at high concentrations by the uterine endometrium during the early phases of pregnancy, carries glycan chains on asparagines at positions N28 and N63. GdA purified from amniotic fluid is known to be a suppressor of T-cell proliferation, an inducer of T-cell apoptosis, and an inhibitorof sperm-zona binding in contrast to its glycoform, glycodelinS (GdS), which is secreted by the seminal vesicles into the seminal plasma. The oligosaccharide chains of GdA terminate in sialic acid residues, whereas those of GdS are not sialylated but are heavily fucosylated. Our previous work has shown that the apoptogenic activity of GdA resides in the protein backbone, and we have also demonstrated the importance of sialylation for the manifestation of GdA-induced apoptosis. Recombinant glycodelin (Gd) expressed in the Sf21 insec cell line yielded an apoptotically active Gd; however, the same geneexpressed in the insect cell line Tni produced apoptotically inactive Gd, as observed with the gene expressed in the Chinese hamster ovary(CHO) cell line and earlier in Pichia pastoris. Glycan analysis of the Tni and Sf21 cell line-expressed Gd proteins reveals differences in their glycan structures, which modulate the manifestation of apoptogenic activity of Gd. Through apoptotic assays carried out with the wild-type (WT) and glycosylation mutants of Gd expressed in Sf21 and Tni cells before and after mannosidase digestion, we conclude that the accessibility to the apoptogenic region of Gd is influenced by the size of the glycans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glycocode. Several tools are being developed for glycan profiling based on chromatography,m mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes is a chronic disease requiring continuous medical supervision and patient education to prevent acute secondary complications. In this study, we have harnessed the inherent property of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid formation, to generate a form that exhibits controlled and sustained release for extended periods. Administration of a single dose of the insulin oligomer, defined here as the supramolecular insulin assembly II (SIA-II), to experimental animals rendered diabetic by streptozotocin or alloxan, released the hormone capable of maintaining physiologic glucose levels for > 120 days for bovine and > 140 days for recombinant human insulin without fasting hypoglycemia. Moreover, the novel SIA-II described here not only improved the glycemic control, but also reduced the extent of secondary diabetic complications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/ 2-NF-kappa B signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique hybrid pathway has been proposed for de novo heme biosynthesis in Plasmodium falciparum involving three different compartments of the parasite, namely mitochondrion, apicoplast and cytosol. While parasite mitochondrion and apicoplast have been shown to harbor key enzymes of the pathway, there has been no experimental evidence for the involvement of parasite cytosol in heme biosynthesis. In this study, a recombinant P. falciparum coproporphyrinogen III oxidase (rPfCPO) was produced in E. coli and confirmed to be active under aerobic conditions. rPfCPO behaved as a monomer of 61 kDa molecular mass in gel filtration analysis. Immunofluorescence studies using antibodies to rPfCPO suggested that the enzyme was present in the parasite cytosol. These results were confirmed by detection of enzyme activity only in the parasite soluble fraction. Western blot analysis with anti-rPfCPO antibodies also revealed a 58 kDa protein only in this fraction and not in the membrane fraction. The cytosolic presence of PfCPO provides evidence for a hybrid heme-biosynthetic pathway in the malarial parasite. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several orthopoxviruses (OPV) and Borna disease virus (BDV) are enveloped, zoonotic viruses with a wide geographical distribution. OPV antibodies cross-react, and former smallpox vaccination has therefore protected human populations from another OPV infection, rodent-borne cowpox virus (CPXV). Cowpox in humans and cats usually manifests as a mild, self-limiting dermatitis and constitutional symptoms, but it can be severe and even life-threatening in the immunocompromised. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep known in central Europe for centuries. Nowadays the virus or its close relative infects humans and also several other species in central Europe and elsewhere, but the existence of human Borna disease with its suspected neuropsychiatric symptoms is controversial. The epidemiology of BDV is largely unknown, and the present situation is even more intriguing following the recent detection of several-million-year-old, endogenized BDV genes in primate and various other vertebrate genomes. The aims of this study were to elucidate the importance of CPXV and BDV in Finland and in possible host species, and particularly to 1) establish relevant methods for the detection of CPXV and other OPVs as well as BDV in Finland, 2) determine whether CPXV and BDV exist in Finland, 3) discover how common OPV immunity is in different age groups in Finland, 4) characterize possible disease cases and clarify their epidemiological context, 5) establish the hosts and possible reservoir species of these viruses and their geographical distribution in wild rodents, and 6) elucidate the infection kinetics of BDV in the bank vole. An indirect immunofluorescence assay and avidity measurement were established for the detection, timing and verification of OPV or BDV antibodies in thousands of blood samples from humans, horses, ruminants, lynxes, gallinaceous birds, dogs, cats and rodents. The mostly vaccine-derived OPV seroprevalence was found to decrease gradually according to the year of birth of the sampled human subjects from 100% to 10% in those born after 1977. On the other hand, OPV antibodies indicating natural contact with CPXV or other OPVs were commonly found in domestic and wild animals: the horse, cow, lynx, dog, cat and, with a prevalence occasionally even as high as 92%, in wild rodents, including some previously undetected species and new regions. Antibodies to BDV were detected in humans, horses, a dog, cats, and for the first time in wild rodents, such as bank voles (Myodes glareolus). Because of the controversy within the human Borna disease field, extra verification methods were established for BDV antibody findings: recombinant nucleocapsid and phosphoproteins were produced in Escherichia coli and in a baculovirus system, and peptide arrays were additionally applied. With these verification assays, Finnish human, equine, feline and rodent BDV infections were confirmed. Taken together, wide host spectra were evident for both OPV and BDV infections based on the antibody findings, and OPV infections were found to be geographically broadly distributed. PCR amplification methods were utilised for hundreds of blood and tissue samples. The methods included conventional, nested and real-time PCRs with or without the reverse transcription step and detecting four or two genes of OPVs and BDV, respectively. OPV DNA could be amplified from two human patients and three bank voles, whereas no BDV RNA was detected in naturally infected individuals. Based on the phylogenetic analyses, the Finnish OPV sequences were closely related although not identical to a Russian CPXV isolate, and clearly different from other CPXV strains. Moreover, the Finnish sequences only equalled each other, but the short amplicons obtained from German rodents were identical to monkeypox virus, in addition to German CPXV variants. This reflects the close relationship of all OPVs. In summary, RNA of the Finnish BDV variant could not be detected with the available PCR methods, but OPV DNA infrequently could. The OPV species infecting the patients of this study was proven to be CPXV, which is most probably also responsible for the rodent infections. Multiple cell lines and some newborn rodents were utilised in the isolation of CPXV and BDV from patient and wildlife samples. CPXV could be isolated from a child with severe, generalised cowpox. BDV isolation attempts from rodents were unsuccessful in this study. However, in parallel studies, a transient BDV infection of cells inoculated with equine brain material was detected, and BDV antigens discovered in archival animal brains using established immunohistology. Thus, based on several independent methods, both CPXV and BDV (or a closely related agent) were shown to be present in Finland. Bank voles could be productively infected with BDV. This experimental infection did not result in notable pathological findings or symptoms, despite the intense spread of the virus in the central and peripheral nervous system. Infected voles commonly excreted the virus in urine and faeces, which emphasises their possible role as a BDV reservoir. Moreover, BDV RNA was regularly reverse transcribed into DNA in bank voles, which was detected by amplifying DNA by PCR without reverse transcription, and verified with nuclease treatments. This finding indicates that BDV genes could be endogenized during an acute infection. Although further transmission studies are needed, this experimental infection demonstrated that the bank vole can function as a potential BDV reservoir. In summary, multiple methods were established and applied in large panels to detect two zoonoses novel to Finland: cowpox virus and Borna disease virus. Moreover, new information was obtained on their geographical distribution, host spectrum, epidemiology and infection kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foreign compounds, such as drugs are metabolised in the body in numerous reactions. Metabolic reactions are divided into phase I (functionalisation) and phase II (conjugation) reactions. Uridine diphosphoglucuronosyltransferase enzymes (UGTs) are important catalysts of phase II metabolic system. They catalyse the transfer of glucuronic acid to small lipophilic molecules and convert them to hydrophilic and polar glucuronides that are readily excreted from the body. Liver is the main site of drug metabolism. Many drugs are racemic mixtures of two enantiomers. Glucuronidation of a racemic compound yields a pair of diastereomeric glucuronides. Stereoisomers are interesting substrates in glucuronidation studies since some UGTs display stereoselectivity. Diastereomeric glucuronides of O-desmethyltramadol (M1) and entacapone were selected as model compounds in this work. The investigations of the thesis deal with enzymatic glucuronidation and the development of analytical methods for drug metabolites, particularly diastereomeric glucuronides. The glucuronides were analysed from complex biological matrices, such as urine or from in vitro incubation matrices. Various pretreatment techniques were needed to purify, concentrate and isolate the analytes of interest. Analyses were carried out by liquid chromatography (LC) with ultraviolet (UV) or mass spectrometric (MS) detection or with capillary electromigration techniques. Commercial glucuronide standards were not available for the studies. Enzyme-assisted synthesis with rat liver microsomes was therefore used to produce M1 glucuronides as reference compounds. The glucuronides were isolated by LC/UV and ultra performance liquid chromatography (UPLC)/MS, while tandem mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR) spectroscopy were employed in structural characterisation. The glucuronides were identified as phenolic O-glucuronides of M1. To identify the active UGT enzymes in (±)-M1 glucuronidation recombinant human UGTs and human tissue microsomes were incubated with (±)-M1. The study revealed that several UGTs can catalyse (±)-M1 glucuronidation. Glucuronidation in human liver microsomes like in rat liver microsomes is stereoselective. The results of the studies showed that UGT2B7, most probably, is the main UGT responsible for (±)-M1 glucuronidation in human liver. Large variation in stereoselectivity of UGTs toward (±)-M1 enantiomers was observed. Formation of M1 glucuronides was monitored with a fast and selective UPLC/MS method. Capillary electromigration techniques are known for their high resolution power. A method that relied on capillary electrophoresis (CE) with UV detection was developed for the separation of tramadol and its free and glucuronidated metabolites. The suitability of the method to identify tramadol metabolites in an authentic urine samples was tested. Unaltered tramadol and four of its main metabolites were detected in the electropherogram. A micellar electrokinetic chromatography (MEKC) /UV method was developed for the separation of the glucuronides of entacapone in human urine. The validated method was tested in the analysis of urine samples of patients. The glucuronides of entacapone could be quantified after oral entacapone dosing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CNS) are the most common bacteria isolated in bovine subclinical mastitis in many countries, and also a frequent cause of clinical mastitis. The most common species isolated are Staphylococcus (S) chromogenes, S. simulans, S. epidermidis, and S. xylosus. One half of the intramammary infections (IMI) caused by CNS persist in the udder. The pathogenesis of IMI caused by CNS is poorly understood. This dissertation focuses on host response in experimental intramammary infection induced by S. chromogenes, S. epidermidis and S. simulans. Model for a mild experimental CNS infection was developed with S. chromogenes (study I). All cows were infected and most developed subclinical mastitis. In study II the innate immune response to S. epidermidis and S. simulans IMI was compared in eight cows using a crossover design. A larger dose of bacteria was used to induce clinical mastitis. All cows became infected and showed mild to moderate clinical signs of mastitis. S. simulans caused a slightly stronger innate immune response than S. epidermidis, with significantly higher concentrations of the interleukins IL-1beta and IL-8 in the milk. The spontaneous elimination rate of the 16 IMIs was 31%, with no difference between species. No significant differences were recorded between infections eliminated spontaneously or remaining persistent, although the response was stronger in IMIs eliminated spontaneously, except the concentration of TNF-α, which remained elevated in persistent infections. Lactoferrin (Lf) is a component of the humoral defence of the host and is present at low concentrations in the milk. The concentration of Lf in milk is high during the dry period, in colostrum, and in mastitic milk. The effect of an inherent, high concentration of Lf in the milk on experimental IMI induced with S. chromogenes was studied in transgenic cows that expressed recombinant human Lf in their milk. Human Lf did not prevent S. chromogenes IMI, but the host response was milder in transgenic cows than in normal cows, and the former eliminated infection faster. Biofilm production has been suggested to promote persistence of IMI. Phenotypic biofilm formation and slime producing ability of CNS isolates from bovine mastitis was investigated in vitro. One-third of mastitis isolates produced biofilm. Slime production was less frequent for isolates of the most common mastitis causing species S. chromogenes and S. simulans compared with S. epidermidis. No association was found between the phenotypic ability to form biofilm and the persistence of IMI or severity of mastitis. Slime production was associated with persistent infections, but only 8% of isolates produced slime.