997 resultados para 279900 Other Biological Sciences
Resumo:
The multidimensional free energy surface for a small fast folding helical protein is explored based on first-principle calculations. The model represents the 46-residue segment from fragment B of staphylococcal protein A. The relationship between collapse and tertiary structure formation, and the order of collapse and secondary structure formation, are investigated. We find that the initial collapse process gives rise to a transition state with about 30% of the native tertiary structure and 50–70% of the native helix content. We also observe two distinct distributions of native helix in this collapsed state (Rg ≈ 12 Å), one with about 20% of the native helical hydrogen bonds, the other with near 70%. The former corresponds to a local minimum. The barrier from this metastable state to the native state is about 2 kBT. In the latter case, folding is essentially a downhill process involving topological assembly. In addition, the order of formation of secondary structure among the three helices is examined. We observe cooperative formation of the secondary structure in helix I and helix II. Secondary structure in helix III starts to form following the formation of certain secondary structure in both helix I and helix II. Comparisons of our results with those from theory and experiment are made.
Resumo:
Non peer reviewed
Resumo:
Peer reviewed
Resumo:
We have examined the effects of inactivation of the p53 tumor suppressor gene on the incidence of apoptotic cell death in two stages of the adenoma-to-carcinoma progression in the intestine: in early adenomas where p53 mutations are rare and in highly dysplastic adenomas where loss of p53 occurs frequently. Homozygosity for an inactivating germ-line mutation of p53 had no effect on the incidence or the rate of progression of ApcMin/+-induced adenomas in mice and also did not affect the frequency of apoptosis in the cells of these adenomas. To examine the effect of p53 loss on apoptosis in late-stage adenomas, we compared the incidence of apoptotic cell death before and after the appearance of highly dysplastic cells in human colonic adenomas. The appearance of highly dysplastic cells, which usually coincides during colon tumor progression with loss of heterozygosity at the p53 locus, did not correlate with a reduction in the incidence of apoptosis. These studies suggest that p53 is only one of the genes that determine the incidence of apoptotic in colon carcinomas and that wild-type p53 retards the progression of many benign colonic adenoma to malignant carcinomas by mechanism(s) other than the promotion of apoptosis.
Resumo:
Eukaryotic genome similarity relationships are inferred using sequence information derived from large aggregates of genomic sequences. Comparisons within and between species sample sequences are based on the profile of dinucleotide relative abundance values (The profile is ρ*XY = f*XY/f*Xf*Y for all XY, where f*X denotes the frequency of the nucleotide X and f*XY denotes the frequency of the dinucleotide XY, both computed from the sequence concatenated with its inverted complement). Previous studies with respect to prokaryotes and this study document that profiles of different DNA sequence samples (sample size ≥50 kb) from the same organism are generally much more similar to each other than they are to profiles from other organisms, and that closely related organisms generally have more similar profiles than do distantly related organisms. On this basis we refer to the collection {ρ*XY} as the genome signature. This paper identifies ρ*XY extremes and compares genome signature differences for a diverse range of eukaryotic species. Interpretations on the mechanisms maintaining these profile differences center on genome-wide replication, repair, DNA structures, and context-dependent mutational biases. It is also observed that mitochondrial genome signature differences between species parallel the corresponding nuclear genome signature differences despite large differences between corresponding mitochondrial and nuclear signatures. The genome signature differences also have implications for contrasts between rodents and other mammals, and between monocot and dicot plants, as well as providing evidence for similarities among fungi and the diversity of protists.
Resumo:
Recent investigations have shown that the maintenance of genomic imprinting of the murine insulin-like growth factor 2 (Igf2) gene involves at least two factors: the DNA (cytosine-5-)-methyltransferase activity, which is required to preserve the paternal specific expression of Igf2, and the H19 gene (lying 90 kb downstream of Igf2 gene), which upon inactivation leads to relaxation of the Igf2 imprint. It is not yet clear how these two factors are related to each other in the process of maintenance of Igf2 imprinting and, in particular, whether the latter is acting through cis elements or whether the H19 RNA itself is involved. By using Southern blots and the bisulfite genomic-sequencing technique, we have investigated the allelic methylation patterns (epigenotypes) of the Igf2 gene in two strains of mouse with distinct deletions of the H19 gene. The results show that maternal transmission of H19 gene deletions leads the maternal allele of Igf2 to adopt the epigenotype of the paternal allele and indicate that this phenomenon is influenced directly or indirectly by the H19 gene expression. More importantly, the bisulfite genomic-sequencing allowed us to show that the methylation pattern of the paternal allele of the Igf2 gene is affected in trans by deletions of the active maternal allele of the H19 gene. Selection during development for the appropriate expression of Igf2, dosage-dependent factors that bind to the Igf2 gene, or methylation transfer between the parental alleles could be involved in this trans effect.
Resumo:
In acute promyelocytic leukemia (APL), the typical t(15;17) and the rare t(11;17) translocations express, respectively, the PML/RARα and PLZF/RARα fusion proteins (where RARα is retinoic acid receptor α). Herein, we demonstrate that the PLZF and PML proteins interact with each other and colocalize onto nuclear bodies (NBs). Furthermore, induction of PML expression by interferons leads to a recruitment of PLZF onto NBs without increase in the levels of the PLZF protein. PML/RARα and PLZF/RARα localize to the same microspeckled nuclear domains that appear to be common targets for the two fusion proteins in APL. Although PLZF/RARα does not affect the localization of PML, PML/RARα delocalizes the endogenous PLZF protein in t(15;17)-positive NB4 cells, pointing to a hierarchy in the nuclear targeting of these proteins. Thus, our results unify the molecular pathogenesis of APL with at least two different RARα gene translocations and stress the importance of alterations of PLZF and RARα nuclear localizations in this disease.
Resumo:
In the cycling human endometrium, the expression of interstitial collagenase (MMP-1) and of several related matrix metalloproteinases (MMPs) follows the late-secretory fall in sex steroid plasma concentrations and is thought to be a critical step leading to menstruation. The rapid and extensive lysis of interstitial matrix that precedes menstrual shedding requires a strict control of these proteinases. However, the mechanism by which ovarian steroids regulate endometrial MMPs remains unclear. We report here that, in the absence of ovarian steroids, MMP-1 expression in endometrial fibroblasts is markedly stimulated by medium conditioned by endometrial epithelial cells. This stimulation can be prevented by antibodies directed against interleukin 1α (IL-1α) but not against several other cytokines. Ovarian steroids inhibit the release of IL-1α and repress MMP-1 production by IL-1α-stimulated fibroblasts. In short-term cultures of endometrial explants obtained throughout the menstrual cycle, the release of both IL-1α and MMP-1 is essentially limited to the perimenstrual phase. We conclude that epithelium-derived IL-1α is the key paracrine inducer of MMP-1 in endometrial fibroblasts. However, MMP-1 production in the human endometrium is ultimately blocked by ovarian steroids, which act both upstream and downstream of IL-1α, thereby exerting an effective control via a “double-block” mechanism.
Resumo:
A novel multispecific organic anion transporting polypeptide (oatp2) has been isolated from rat brain. The cloned cDNA contains 3,640 bp. The coding region extends over 1,983 nucleotides, thus encoding a polypeptide of 661 amino acids. Oatp2 is homologous to other members of the oatp gene family of membrane transporters with 12 predicted transmembrane domains, five potential glycosylation, and six potential protein kinase C phosphorylation sites. In functional expression studies in Xenopus laevis oocytes, oatp2 mediated uptake of the bile acids taurocholate (Km ≈ 35 μM) and cholate (Km ≈ 46 μM), the estrogen conjugates 17β-estradiol-glucuronide (Km ≈ 3 μM) and estrone-3-sulfate (Km ≈ 11 μM), and the cardiac gylcosides ouabain (Km ≈ 470 μM) and digoxin (Km ≈ 0.24 μM). Although most of the tested compounds are common substrates of several oatp-related transporters, high-affinity uptake of digoxin is a unique feature of the newly cloned oatp2. On the basis of Northern blot analysis under high-stringency conditions, oatp2 is highly expressed in brain, liver, and kidney but not in heart, spleen, lung, skeletal muscle, and testes. These results provide further support for the overall significance of oatps as a new family of multispecific organic anion transporters. They indicate that oatp2 may play an especially important role in the brain accumulation and toxicity of digoxin and in the hepatobiliary and renal excretion of cardiac glycosides from the body.
Resumo:
In a Hungarian family with triosephosphate isomerase (TPI) deficiency, two compound heterozygote brothers were found with the same severe decrease in TPI activity, but only one of them had the classical symptoms. In search for the pathogenesis of the differing phenotype of the same genotypic TPI deficiency, an increase in red cell membrane fluidity was found. There were roughly 100% and 30% more 16:0/20:4 and 18:0/20:4 diacyl-phosphatidylcholine species in erythrocytes from the two TPI-deficient brothers than in the probes from healthy controls. The activities of acethylcholinesterase and calmodulin induced Ca2+ ATPase were significantly enhanced in erythrocytes from the propositus as compared with those of the neurologically symptom-free brother and other members of the TPI-deficient family as well as to those from healthy controls. Both enzymes are crucially involved in the function of nerve cells. The observed differences in membrane fluidity and enzyme activities between the erythrocytes from the phenotypically differing TPI-deficient brothers underline the importance of investigations into the effect of biophysical changes in the lipid environment of the membrane proteins on the development of disseminated focal neurological disorders of unknown pathogenic origin.
Resumo:
Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10–100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at −50°C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect against the risk of cancer as effectively as much larger quantities of mature vegetables of the same variety.
Resumo:
At early stages in visual processing cells respond to local stimuli with specific features such as orientation and spatial frequency. Although the receptive fields of these cells have been thought to be local and independent, recent physiological and psychophysical evidence has accumulated, indicating that the cells participate in a rich network of local connections. Thus, these local processing units can integrate information over much larger parts of the visual field; the pattern of their response to a stimulus apparently depends on the context presented. To explore the pattern of lateral interactions in human visual cortex under different context conditions we used a novel chain lateral masking detection paradigm, in which human observers performed a detection task in the presence of different length chains of high-contrast-flanked Gabor signals. The results indicated a nonmonotonic relation of the detection threshold with the number of flankers. Remote flankers had a stronger effect on target detection when the space between them was filled with other flankers, indicating that the detection threshold is caused by dynamics of large neuronal populations in the neocortex, with a major interplay between excitation and inhibition. We considered a model of the primary visual cortex as a network consisting of excitatory and inhibitory cell populations, with both short- and long-range interactions. The model exhibited a behavior similar to the experimental results throughout a range of parameters. Experimental and modeling results indicated that long-range connections play an important role in visual perception, possibly mediating the effects of context.
Resumo:
Temporal patterning of biological variables, in the form of oscillations and rhythms on many time scales, is ubiquitous. Altering the temporal pattern of an input variable greatly affects the output of many biological processes. We develop here a conceptual framework for a quantitative understanding of such pattern dependence, focusing particularly on nonlinear, saturable, time-dependent processes that abound in biophysics, biochemistry, and physiology. We show theoretically that pattern dependence is governed by the nonlinearity of the input–output transformation as well as its time constant. As a result, only patterns on certain time scales permit the expression of pattern dependence, and processes with different time constants can respond preferentially to different patterns. This has implications for temporal coding and decoding, and allows differential control of processes through pattern. We show how pattern dependence can be quantitatively predicted using only information from steady, unpatterned input. To apply our ideas, we analyze, in an experimental example, how muscle contraction depends on the pattern of motorneuron firing.
Resumo:
We identified a protein, Aer, as a signal transducer that senses intracellular energy levels rather than the external environment and that transduces signals for aerotaxis (taxis to oxygen) and other energy-dependent behavioral responses in Escherichia coli. Domains in Aer are similar to the signaling domain in chemotaxis receptors and the putative oxygen-sensing domain of some transcriptional activators. A putative FAD-binding site in the N-terminal domain of Aer shares a consensus sequence with the NifL, Bat, and Wc-1 signal-transducing proteins that regulate gene expression in response to redox changes, oxygen, and blue light, respectively. A double mutant deficient in aer and tsr, which codes for the serine chemoreceptor, was negative for aerotaxis, redox taxis, and glycerol taxis, each of which requires the proton motive force and/or electron transport system for signaling. We propose that Aer and Tsr sense the proton motive force or cellular redox state and thereby integrate diverse signals that guide E. coli to environments where maximal energy is available for growth.
Resumo:
The cellular targets for estramustine, an antitumor drug used in the treatment of hormone-refractory prostate cancer, are believed to be the spindle microtubules responsible for chromosome separation at mitosis. Estramustine only weakly inhibits polymerization of purified tubulin into microtubules by binding to tubulin (Kd, ≈30 μM) at a site distinct from the colchicine or the vinblastine binding sites. However, by video microscopy, we find that estramustine strongly stabilizes growing and shortening dynamics at plus ends of bovine brain microtubules devoid of microtubule-associated proteins at concentrations substantially below those required to inhibit polymerization of the microtubules. Estramustine strongly reduced the rate and extent both of shortening and growing, increased the percentage of time the microtubules spent in an attenuated state, neither growing nor shortening detectably, and reduced the overall dynamicity of the microtubules. Significantly, the combined suppressive effects of vinblastine and estramustine on the rate and extent of shortening and dynamicity were additive. Thus, like the antimitotic mechanisms of action of the antitumor drugs vinblastine and taxol, the antimitotic mechanism of action of estramustine may be due to kinetic stabilization of spindle microtubule dynamics. The results may explain the mechanistic basis for the benefit derived from combined use of estramustine with vinblastine or taxol, two other drugs that target microtubules, in the treatment of hormone-refractory prostate cancer.