983 resultados para 149-901
Resumo:
The drag and lift coefficients for a viscous optimized Mach 6 conical waverider has been measured using an accelerometer force balance system in the IISc hypersonic shock tunnel. A rubber bush placed in between the waverider model and the steel sting ensures unrestrained motion to the model during shock tunnel testing (500 mu s). Two accelerometers mounted on the model are used to measure the model accelerations in the axial and normal directions. The measured value of lift to drag ratio at zero angle of incidence for the IISc conical waverider with viscous optimized leading edge is 2.149, which compares well with the value reported in the open literature (Anderson et al 1991) for similar class of waveriders designed for a flight Mach number of 6. The details of the experimental study along with illustrative numerical results are discussed in this paper.
Resumo:
Short range side chain-backbone hydrogen bonded motifs involving Asn and Gln residues have been identified from a data set of 1370 protein crystal structures (resolution = 1.5 angstrom). Hydrogen bonds involving residues i - 5 to i + 5 have been considered. Out of 12,901 Asn residues, 3403 residues (26.4%) participate in such interactions, while out of 10,934 Gln residues, 1780 Gln residues (16.3%) are involved in these motifs. Hydrogen bonded ring sizes (Cn, where n is the number of atoms involved), directionality and internal torsion angles are used to classify motifs. The occurrence of the various motifs in the contexts of protein structure is illustrated. Distinct differences are established between the nature of motifs formed by Asn and Gln residues. For Asn, the most highly populated motifs are the C10 (COdi .NHi + 2), C13 (COdi .NHi + 3) and C17 (NdHi .COi - 4) structures. In contrast, Gln predominantly forms C16 (COei .NHi - 3), C12 (NeHi .COi - 2), C15 (NeHi .COi - 3) and C18 (NeHi .COi - 4) motifs, with only the C18motif being analogous to the Asn C17structure. Specific conformational types are established for the Asn containing motifs, which mimic backbone beta-turns and a-turns. Histidine residues are shown to serve as a mimic for Asn residues in side chain-backbone hydrogen bonded ring motifs. Illustrative examples from protein structures are considered. Proteins 2012; (c) 2011 Wiley Periodicals, Inc.
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K-T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 101] direction. Solutions corresponding to different stress intensity rates K., T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with K. which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.
Resumo:
Multiferroic nanoparticles (NPs) of pristine and Ca, Ba co-doped BiFeO3 were synthesized by a facile sal gel route. Co-doping was done by fixing the total dopant concentration at 5 mol% and then the relative concentrations of Ca and Ba was varied. Structural, optical and magnetic properties of the NPs were investigated using different techniques. UV-Vis absorption spectra of BiFeO3 NPs showed a substantial blue shift of similar to 100 nm (530 nm -> 430 nm) on Ca. Ba co-doping which corresponds to increase in band gap by 0.5 eV. Fe-57 Mossbauer spectroscopy confirmed that iron is present only in 3(+) valence state in all co-doped samples. The coercive field increased by 18 times for Bi0.95Ca0.01Ba0.04FeO3 samples, which is the maximum enhancement, observed amongst all the 5 mol% doped samples. At the equimolar (2.5 mol % each) concentration of co-dopants, the coercive field shows a significant enhancement of about 9 times (220 Oe -> 2014 Oe) with concomitant increase in saturation magnetization by 7 times. Thus, equimolar co-doping causes simultaneous enhancement of the twin aspects of magnetic properties thereby making them better suited for device applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the tree cricket Oecanthus henryi, females are attracted by male calls and can choose between males. To make a case for female choice based on male calls, it is necessary to examine male call variation in the field and identify repeatable call features that are reliable indicators of male size or symmetry. Female preference for these reliable call features and the underlying assumption behind this choice, female preference for larger males, also need to be examined. We found that females did prefer larger males during mating, as revealed by the longer mating durations and longer spermatophore retention times. We then examined the correlation between acoustic and morphological features and the repeatability of male calls in the field across two temporal scales, within and across nights. We found that carrier frequency was a reliable indicator of male size, with larger males calling at lower frequencies at a given temperature. Simultaneous playback of male calls differing in frequency, spanning the entire range of natural variation at a given temperature, revealed a lack of female preference for low carrier frequencies. The contrasting results between the phonotaxis and mating experiments may be because females are incapable of discriminating small differences in frequency or because the change in call carrier frequency with temperature renders this cue unreliable in tree crickets. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Halloysite nanotubes (HNTs) of the dimension 50nm x 1-3 mu m (diameter x length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Efficient ZnO:Eu3+ (1-11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu3+ (7 mol%) was found to be in the range 27-47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at similar to 590, 615, 648 and 702 nm were attributed to the D-5(0) -> F-7(j(j=1,2,3,4)) transitions of Eu3+ ions. The highest PL intensity was recorded for 7 mol% with Eu3+ ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED's. Further, present method was reliable, environmentally friendly and alternative to economical routes. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a simple second-order, curvature based mobility analysis of planar curves in contact. The underlying theory deals with penetration and separation of curves with multiple contacts, based on relative configuration of osculating circles at points of contact for a second-order rotation about each point of the plane. Geometric and analytical treatment of mobility analysis is presented for generic as well as special contact geometries. For objects with a single contact, partitioning of the plane into four types of mobility regions has been shown. Using point based composition operations based on dual-number matrices, analysis has been extended to computationally handle multiple contacts scenario. A novel color coded directed line has been proposed to capture the contact scenario. Multiple contacts mobility is obtained through intersection of the mobility half-spaces. It is derived that mobility region comprises a pair of unbounded or a single bounded convex polygon. The theory has been used for analysis and synthesis of form closure configurations, revolute and prismatic kinematic pairs. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A new partial integrated guidance and control design approach is proposed in this paper, which combines the benefits of both integrated guidance and control as well as the conventional guidance and control design philosophies. The proposed technique essentially operates in a two-loop structure. In the outer loop, an optimal guidance problem is formulated considering the nonlinear six degrees-of-freedom equation of motion of the interceptor. From this loop, the required pitch and yaw rates are generated by solving a nonlinear suboptimal guidance formulation in a computationally efficient manner while simultaneously assuring roll stabilization. Next, the inner loop tracks these outer loop body rate commands. This manipulation of the six degrees-of-freedom dynamics in both loops preserves the inherent time scale separation property between the translational and rotational dynamics, while retaining the philosophy of integrated guidance and control design as well. Because of this, the tuning process is quite straightforward and nontedious as well. Extensive six degrees-of-freedom simulations studies have been carried out, considering three-dimensional engagement geometry, to demonstrate the effectiveness of the proposed new design approach engaging high-speed ballistic targets. A variety of comparison studies have also been carried out to demonstrate the effectiveness of the proposed approach.
Resumo:
We report the synthesis as well as structural and physical properties of the bulk polycrystalline FeTe and FeTe0.5Se0.5 compounds. These samples are synthesised by the solid state-reaction method via vacuum encapsulation. Both studied compounds are crystallized in a tetragonal phase with space group P4/nmm. The parent FeTe compound shows an anomaly in resistivity measurement at around 78 K, which is due to the structural change along with a magnetic phase transition. The superconductivity in the FeTe0.5Se0.5 sample at 13 K is confirmed by the resistivity measurements. DC magnetisation along with an isothermal (M-H) loop shows that FeTe0.5Se0.5 possesses bulk superconductivity. The upper critical field is estimated through resistivity rho (T,H) measurements using Gingzburg-Landau (GL) theory and is above 50 T with 50 % resistivity drop criterion. The origin of the resistive transition broadening under magnetic field is investigated by thermally activated flux flow. The magnetic field dependence of the activation energy of the flux motion is discussed.
Resumo:
The recrystallization behaviour of cold-rolled nanocrystalline (nc) nickel has been studied at temperatures between 573 and 1273 K using bulk texture measurements and electron back-scattered diffraction. The texture in nc nickel is different from that of its microcrystalline counterpart, consisting of a strong Goss (G) and rotated Goss (RG) components at 773 K instead of the typical cube component. The texture evolution in nc Ni has been attributed to the prior deformation textures and nucleation advantage of G and RG grains.
Resumo:
The image reconstruction problem encountered in diffuse optical tomographic imaging is ill-posed in nature, necessitating the usage of regularization to result in stable solutions. This regularization also results in loss of resolution in the reconstructed images. A frame work, that is attributed by model-resolution, to improve the reconstructed image characteristics using the basis pursuit deconvolution method is proposed here. The proposed method performs this deconvolution as an additional step in the image reconstruction scheme. It is shown, both in numerical and experimental gelatin phantom cases, that the proposed method yields better recovery of the target shapes compared to traditional method, without the loss of quantitativeness of the results.