951 resultados para water drinking test
Resumo:
Purpose: To assess the microshear bond strength of 3 experimental adhesives with different degrees of hydrophilicity after 1, 7 and 90 days of storage. Materials and Methods: The bonding effectiveness of three experimental two-step etch-and-rinse adhesives (bis-GMA, bis-EMA/bis-GMA, polybutadiene [C6H12]) and one commercial adhesive (Single Bond) to sound hydrated dentin was determined using the nnicroshear test with delimitation of the adhesive area after 1, 7, and 90 days of storage in water at 37 degrees C. Two-way ANOVA was performed at the 0.05 probability level. The fractures were classified as adhesive, cohesive in dentin, cohesive in resin, and mixed. Results: The experimental adhesives showed values in the range of 11.31 to 12.96 MPa, with polybutadiene (PBH) showing the lowest bond strengths, bis-GMA the highest, and bis-EMA/bis-GMA intermediary values. Single Bond yielded bond strengths of approximately 24 MPa. Water storage decreased the bond strength in all adhesives. Adhesive fractures were predominant in experimental adhesives, while mixed fractures were the most frequent type in the Single Bond group. Conclusion: The experimental dentin adhesives of this study were able to form resin tags, but they could not penetrate into the collagen fibers and form hybrid layers. The resulting low bond strength decreased with increasing length of storage.
Resumo:
Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.
Resumo:
To boost crop yield, sugarcane growers are using increasing amounts of pesticides to combat insects and weeds. But residues of these compounds can pollute water resources, such as lakes, rivers and aquifers. The present paper reports the results of a study of water samples from the Feijao River, which is the source of drinking water for the city of Sao Carlos, Sao Paulo, Brazil. The samples were evaluated for the presence of four leading pesticides - ametryn, atrazine, diuron and fipronil - used on sugarcane, the dominant culture in the region. The samples were obtained from three points along the river: the headwaters, along the middle course of the river and just before the municipal water intake station. The pesticides were extracted from the water samples by solid-phase extraction (SPE) and then analyzed by liquid chromatography with diode array detection (LC-DAD). The analytical method was validated by traditional methods, obtaining recovery values between 90 and 95%, with precision deviations inferior to 2.56%, correlation coefficients above 0.99 and detection and quantification limits varying from 0.02 to 0.05 mg L-1 and 0.07 to 0.17 mg L-1, respectively. No presence of residues of the pesticides was detected in the samples, considering the detection limits of the method employed.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in Sao Carlos (Fazenda Canchim), in Sao Paulo State, Brazil. Experimental plots of 33 m(2) were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e. g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
Terrestrial amphibians may dehydrate when exposed to low humidity, representing an important factor affecting spatial distribution and community composition. In this study we investigated whether rates of dehydration and rehydration are able to explain the spatial distribution of an anuran community in a Restinga environment at the northern coast of the State of Bahia, Brazil, represented by 11 species distributed in 27 sample units. The environmental data set containing 20 variables was reduced to a few synthetic axes by principal component analysis (PCA). Physiological variables measured were rates of dehydration, rehydration from water, and rehydration from a neutral substrate. Multiple regression analyses were used to test the null hypothesis of no association between the environmental data set (synthetic axes of PCA) and each axis representative of a physiological variable, which was rejected (P < 0.001). Of 15 possible partial regressions only rehydration rate from neutral substrate vs. PC1. and PC2, rehydration rate from water vs. PC1, and dehydration rate vs. PC2 were significant. Our analysis was influenced by a gradient between two different groups of sample units: a beach area with high density of bromeliads and an environment without bodies of water with low density of bromeliads. Species of very specific natural history and morphological characters occur in these environments: Phyllodytes melanomystax and Scinax auratus, species frequently occurring in terrestrial bromeliads, and Ischnocnema paulodutrai, common along the northern coast of Bahia and usually found in forest remnants within environments with low number of bodies of water. In dry environments species with lower rates of dehydration were dominant, whereas species showing greater rates of dehydration were found predominantly in microhabitats with greater moisture or abundance of bodies of water.
Resumo:
Objective: - To develop and test a practical clinical method to assess frailty in nursing homes; - To investigate the relationship between cognitive status of the elderly and the balance between water compartments of their body composition. Design and subjects: Cross-sectional study, conducted at two nursing homes in Boston-MA. Methods: Body mass and height (Ht) were evaluated to calculate BMI (body mass index, in Kg/m(2)). The cognitive decline was evaluated based on the scores obtained from the Mini-Mental State Examination (MMSE); The extracellular to total body water ratio (ECW/TBW) was calculated after the analysis of TBW from deuterium and tritium dilution and ECW from bromide dilution. Single-frequency BIA analysis data were investigated for resistance (R) and reactance (Xc), plotted in an R/Ht Xc/Ht graph (vectorial analysis-BIVA). The BIVA results of nursing home residents were compared against the data obtained from the NHANES Ill study. TBW and ECW values were compared with a group of free-living elderly volunteers. Results: The ECW/TBW was significantly higher in nursing home residents than in the free-living individuals. BIVA analysis showed significantly higher Xc/Ht values in the reference subjects. The MMSE did not present a significant correlation with ECW/TBW for either gender. Conclusion: We proposed the ECW/TBW ratio and BIVA as surrogate methods for the clinical assessment of frailty. We tested successfully both approaches with nursing home patients and free-living volunteers and compared them to a national data base. The advent of new, portable instruments will enable field tests to further validate our proposed "Frailty Factor" in future studies. We found no correlation between frailty and cognitive decline in the nursing home.
Resumo:
An environmental impact study was conducted to determine the Piracicamirim's creek water quality in order to assess the influence of effluents from a sugar industry in this water body. For this, toxicity tests were performed with a water sample upstream and downstream the industry using the microcrustaceans Daphnia magna, Ceriodaphnia dubia and Ceriodaphnia silvestrii as test organisms, as well as physical and chemical analysis of water. Results showed that physical and chemical parameters did not change during the sampling period, except for the dissolved oxygen. No toxicity was observed for D. magna and reproduction of C. dubia and C. silvestrii in both sampling points. Thus, the industry was not negatively impacting the quality of this water body.
Resumo:
This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.
Resumo:
Aim To compare the changes in the surface structure and elemental distribution, as well as the percentage of ion release, of four calcium silicate-containing endodontic materials with a well-established epoxy resin-based sealer, submitted to a solubility test. Methodology Solubility of AH Plus, iRoot SP, MTA Fillapex, Sealapex and MTA-Angelus (MTA-A) was tested according to ANSI/ADA Specification 57. The deionized water used in the solubility test was submitted to atomic absorption spectrophotometry to determine and quantify Ca2+, Na+, K+, Zn2+, Ni2+ and Pb2+ ions release. In addition, the outer and inner surfaces of nonsubmitted and submitted samples of each material to the solubility test were analysed by means of scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDX). Statistical analysis was performed by using one-way anova and Tukeys post hoc tests (a = 0.05). Results Solubility results, in percentage, sorted in an increasing order were -1.24 +/- 0.19 (MTA-A), 0.28 +/- 0.08 (AH Plus), 5.65 +/- 0.80 (Sealapex), 14.89 +/- 0.73 (MTA Fillapex) and 20.64 +/- 1.42 (iRoot SP). AH Plus and MTA-A were statistically similar (P > 0.05), but different from the other materials (P < 0.05). High levels of Ca2+ ion release were observed in all groups except AH Plus sealer. MTA-A also had the highest release of Na2+ and K+ ions. Zn+2 ion release was observed only with AH Plus and Sealapex sealers. After the solubility test, all surfaces had morphological changes. The loss of matrix was evident and the filler particles were more distinguishable. EDX analysis displayed high levels of calcium and carbon at the surface of Sealapex, MTA Fillapex and iRoot SP. Conclusions AH Plus and MTA-A were in accordance with ANSI/ADAs requirements regarding solubility whilst iRoot SP, MTA Fillapex and Sealapex did not fulfil ANSI/ADAs protocols. High levels of Ca2+ ion release were observed in all materials except AH Plus. SEM/EDX analysis revealed that all samples had morphological changes in both outer and inner surfaces after the solubility test. High levels of calcium and carbon were also observed at the surface of all materials except AH Plus and MTA-A.
Resumo:
The purpose of this study was to determine the prevalence, associated risk factors and genotype of Giardia duodenalis infection in children attending public daycare centers in the city of Araguari, state of Minas Gerais, Brazil. Fecal samples were collected from 245 children aged 0-5 years, and questionnaires were asked about sociodemographic and hygiene-related characteristics. At the daycare centers where children tested positive, fecal samples were collected from the staff handling food, and from family members and domestic animals. Positive samples were analyzed at the dehydrogenase glutamate (gdh) locus to determine the genotype. The prevalence of G. duodenalis was 51.8%, and drinking unfiltered and unboiled water (OR 2.12, CI 1.26-3.69, p<0.001) and washing hands only with water (OR 2.14, Cl 1.19-4.04, p<0.001) were related risk factors. No association was found between test-positive children anti their family members, domestic animals and food handlers. An analysis of the sequences of 30 samples revealed that they all belonged to genotype B. (C) 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.
Resumo:
In this manuscript, an automatic setup for screening of microcystins in surface waters by employing photometric detection is described. Microcystins are toxins delivered by cyanobacteria within an aquatic environment, which have been considered strongly poisonous for humans. For that reason, the World Health Organization (WHO) has proposed a provisional guideline value for drinking water of 1 mu g L-1. In this work, we developed an automated equipment setup, which allows the screening of water for concentration of microcystins below 0.1 mu g V. The photometric method was based on the enzyme-linked immunosorbent assay (ELISA) and the analytical signal was monitored at 458 nm using a homemade LED-based photometer. The proposed system was employed for the detection of microcystins in rivers and lakes waters. Accuracy was assessed by processing samples using a reference method and applying the paired t-test between results. No significant difference at the 95% confidence level was observed. Other useful features including a linear response ranging from 0.05 up to 2.00 mu g L-1 (R-2 =0.999) and a detection limit of 0.03 mu g L-1 microcystins were achieved. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Water pollution caused by toxic cyanobacteria is a problem worldwide, increasing with eutrophication. Due to its biological significance, genotoxicity should be a focus for biomonitoring pollution owing to the increasing complexity of the toxicological environment in which organisms are exposed. Cyanobacteria produce a large number of bioactive compounds, most of which lack toxicological data. Microcystins comprise a class of potent cyclic heptapeptide toxins produced mainly by Microcystis aeruginosa. Other natural products can also be synthesized by cyanobacteria, such as the protease inhibitor, aeruginosin. The hepatotoxicity of microcystins has been well documented, but information on the genotoxic effects of aeruginosins is relatively scarce. In this study, the genotoxicity and ecotoxicity of methanolic extracts from two strains of M. aeruginosa NPLJ-4, containing high levels of microcystin, and M. aeruginosa NPCD-1, with high levels of aeruginosin, were evaluated. Four endpoints, using plant assays in Allium cepa were applied: rootlet growth inhibition, chromosomal aberrations, mitotic divisions, and micronucleus assays. The microcystin content of M. aeruginosa NPLJ-4 was confirmed through ELISA, while M. aeruginosa NPCD-1 did not produce microcystins. The extracts of M. aeruginosa NPLJ-4 were diluted at 0.01, 0.1, 1 and 10 ppb of microcystins: the same procedure was used to dilute M. aeruginosa NPCD-1 used as a parameter for comparison, and water was used as the control. The results demonstrated that both strains inhibited root growth and induced rootlet abnormalities. The strain rich in aeruginosin was more genotoxic, altering the cell cycle, while microcystins were more mitogenic. These findings indicate the need for future research on non-microcystin producing cyanobacterial strains. Understanding the genotoxicity of M. aeruginosa extracts can help determine a possible link between contamination by aquatic cyanobacteria and high risk of primary liver cancer found in some areas as well as establish water level limits for compounds not yet studied. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The stratified oil-water flow pattern is common in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interfacial wave properties, i.e., average shape, celerity and geometric properties (amplitude and wavelength) as a function of holdup, inclination angle and phases' relative velocity. However, the data available in the literature on wavy stratified flow is scanty, especially in inclined pipes and when oil is viscous. This paper presents new geometric and kinematic interfacial wave properties as a function of a proposed two-phase Froude number in the wavy-stratified liquid-liquid flow. The experimental work was conducted in a glass test line of 12 m and 0.026 m id., oil (density and viscosity of 828 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and water as the working fluids at several inclinations from horizontal (-20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees). The results suggest a physical relation between wave shape and the hydrodynamic stability of the stratified liquid-liquid flow pattern. (C) 2011 Elsevier Inc. All rights reserved.