918 resultados para vertically stacked photovoltaic thermal solar cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally conductive resins are a class of material that show promise in many different applications. One growing field for their use is in the area of bipolar plate technology for fuel cell applications. In this work, a LCP was mixed with different types of carbon fillers to determine the effects of the individual carbon fillers on the thermal conductivity of the composite resin. In addition, mathematical modeling was performed on the thermal conductivity data with the goal of developing predictive models for the thermal conductivity of highly filled composite resins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron nitride nanotubes (BNNTs) are structurally similar to carbon nanotubes (CNTs), but exhibit completely different physical and chemical properties. Thus, BNNTs with various interesting properties may be complementary to CNTs and provide an alternative perspective to be useful in different applications. However, synthesis of high quality of BNNTs is still challenging. Hence, the major goals of this research work focus on the fundamental study of synthesis, characterizations, functionalization, and explorations of potential applications. In this work, we have established a new growth vapor trapping (GVT) approach to produce high quality and quantity BNNTs on a Si substrate, by using a conventional tube furnace. This chemical vapor deposition (CVD) approach was conducted at a growth temperature of 1200 °C. As compared to other known approaches, our GVT technique is much simpler in experimental setup and requires relatively lower growth temperatures. The as-grown BNNTs are fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Energy Filtered Mapping, Raman spectroscopy, Fourier Transform Infra Red spectroscopy (FTIR), UV-Visible (UV-vis) absorption spectroscopy, etc. Following this success, the growth of BNNTs is now as convenient as growing CNTs and ZnO nanowires. Some important parameters have been identified to produce high-quality BNNTs on Si substrates. Furthermore, we have identified a series of effective catalysts for patterned growth of BNNTs at desirable or pre-defined locations. This catalytic CVD technique is achieved based on our finding that MgO, Ni or Fe are the good catalysts for the growth of BNNTs. The success of patterned growth not only explains the role of catalysts in the formation of BNNTs, this technique will also become technologically important for future device fabrication of BNNTs. Following our success in controlled growth of BNNTs on substrates, we have discovered the superhydrophobic behavior of these partially vertically aligned BNNTs. Since BNNTs are chemically inert, resistive to oxidation up to ~1000°C, and transparent to UV-visible light, our discovery suggests that BNNTs could be useful as self-cleaning, insulating and protective coatings under rigorous chemical and thermal conditions. We have also established various approaches to functionalize BNNTs with polymeric molecules and carbon coatings. First, we showed that BNNTs can be functionalized by mPEG-DSPE (Polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a bio-compatible polymer that helps disperse and dissolve BNNTs in water solution. Furthermore, well-dispersed BNNTs in water can be cut from its original length of >10µm to(>20hrs). This success is an essential step to implement BNNTs in biomedical applications. On the other hand, we have also succeeded to functionalize BNNTs with various conjugated polymers. This success enables the dispersion of BNNTs in organic solvents instead of water. Our approaches are useful for applications of BNNTs in high-strength composites. In addition, we have also functionalized BNNTs with carbon decoration. This was performed by introducing methane (CH4) gas into the growth process of BNNT. Graphitic carbon coatings can be deposited on the side wall of BNNTs with thicknesses ranging from 2 to 5 nm. This success can modulate the conductivity of pure BNNTs from insulating to weakly electrically conductive. Finally, efforts were devoted to explore the application of the wide bandgap BNNTs in solar-blind deep UV (DUV) photo-detectors. We found that photoelectric current generated by the DUV light was dominated in the microelectrodes of our devices. The contribution of photocurrent from BNNTs is not significant if there is any. Implication from these preliminary experiments and potential future work are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Plasma and Supra-Thermal Ion Composition (PLASTIC) instrument is one of four experiment packages on board of the two identical STEREO spacecraft A and B, which were successfully launched from Cape Canaveral on 26 October 2006. During the two years of the nominal STEREO mission, PLASTIC is providing us with the plasma characteristics of protons, alpha particles, and heavy ions. PLASTIC will also provide key diagnostic measurements in the form of the mass and charge state composition of heavy ions. Three measurements (E/qk, time of flight, ESSD) from the pulse height raw data are used to characterize the solar wind ions from the solar wind sector, and part of the suprathermal particles from the wide-angle partition with respect to mass, atomic number and charge state. In this paper, we present a new method for flight data analysis based on simulations of the PLASTIC response to solar wind ions. We present the response of the entrance system / energy analyzer in an analytical form. Based on stopping power theory, we use an analytical expression for the energy loss of the ions when they pass through a thin carbon foil. This allows us to model analytically the response of the time of flight mass spectrometer to solar wind ions. Thus we present a new version of the analytical response of the solid state detectors to solar wind ions. Various important parameters needed for our models were derived, based on calibration data and on the first flight measurements obtained from STEREO-A. We used information from each measured event that is registered in full resolution in the Pulse Height Analysis words and we derived a new algorithm for the analysis of both existing and future data sets of a similar nature which was tested and works well. This algorithm allows us to obtain, for each measured event, the mass, atomic number and charge state in the correct physical units. Finally, an important criterion was developed for filtering our Fe raw flight data set from the pulse height data without discriminating charge states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from C-14 and Be-10 records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780–1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere–ocean chemistry–climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2–3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top–down processes (stemming from changes at λ < 250 nm) relative to bottom–up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies investigated solar–terrestrial responses (thermal state, O₃ , OH, H₂O) with emphasis on the tropical upper atmosphere. In this paper the Focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) are investigated to study oscillations with the Focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼64 km) during the rising sun spot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations Support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing thesi-milarity of their temporal oscillations. The H₂O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to −0.3 to −0.4, and the Phase lag is 6–10 days at 0.04 hPa. The confidence level of the correlation is ≥99%. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photo dissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC)complete our study. More periods of high common wavelet power of H₂O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level)correlations occur intermittently in the 27 and 13-day band with variable Phase lock behavior. Large Lyman-α oscillations appeared after the solar super storm in July 2012 and the H₂O oscillations show a well pronounced anticorrelation. The competition between advective transport and photo dissociation loss of mesospheric water vapor may explain the sometimes variable Phase relationship of mesospheric H₂O and solar Lyman-α oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal and mechanical material properties determine comet evolution and even solar system formation because comets are considered remnant volatile-rich planetesimals. Using data from the Multipurpose Sensors for Surface and Sub-Surface Science (MUPUS) instrument package gathered at the Philae landing site Abydos on comet 67P/Churyumov-Gerasimenko, we found the diurnal temperature to vary between 90 and 130 K. The surface emissivity was 0.97, and the local thermal inertia was 85 +/- 35 J m(-2) K(-1)s(-1/2). The MUPUS thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength. A sintered near-surface microporous dust-ice layer with a porosity of 30 to 65% is consistent with the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53 °C ± 0.53 °C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34 °C ± 0.25 °C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature has a profound effect on the species composition and physiology of marine phytoplankton, a polyphyletic group of microbes responsible for half of global primary production. Here, we ask whether and how thermal reaction norms in a key calcifying species, the coccolithophore Emiliania huxleyi, change as a result of 2.5 years of experimental evolution to a temperature about 2°C below its upper thermal limit. Replicate experimental populations derived from a single genotype isolated from Norwegian coastal waters were grown at two temperatures for 2.5 years before assessing thermal responses at 6 temperatures ranging from 15 to 26°C, with pCO2 (400/1100/2200 ?atm) as a fully factorial additional factor. The two selection temperatures (15°/26.3°C) led to a marked divergence of thermal reaction norms. Optimal growth temperatures were 0.7°C higher in experimental populations selected at 26.3°C than those selected at 15.0°C. An additional negative effect of high pCO2 on maximal growth rate (8% decrease relative to lowest level) was observed. Finally, the maximum persistence temperature (Tmax) differed by 1-3°C between experimental treatments, as a result of an interaction between pCO2 and the temperature selection. Taken together, we demonstrate that several attributes of thermal reaction norms in phytoplankton may change faster than the predicted progression of ocean warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency (F v/F m) and effective photochemical efficiency (delta F/F m') of PSII, declines in net photosynthesis (P net) and photosynthetic efficiency (alpha), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280-400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 µatm; with pH(NBS) 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315-400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280-315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi.