Swift thermal reaction norm evolution in a key coccolithopore species: Reaction norm assay data from an experiment in Kiel from December 2012 to June 2015


Autoria(s): Listmann, Luisa; Reusch, Thorsten BH
Data(s)

08/01/2016

Resumo

Temperature has a profound effect on the species composition and physiology of marine phytoplankton, a polyphyletic group of microbes responsible for half of global primary production. Here, we ask whether and how thermal reaction norms in a key calcifying species, the coccolithophore Emiliania huxleyi, change as a result of 2.5 years of experimental evolution to a temperature about 2°C below its upper thermal limit. Replicate experimental populations derived from a single genotype isolated from Norwegian coastal waters were grown at two temperatures for 2.5 years before assessing thermal responses at 6 temperatures ranging from 15 to 26°C, with pCO2 (400/1100/2200 ?atm) as a fully factorial additional factor. The two selection temperatures (15°/26.3°C) led to a marked divergence of thermal reaction norms. Optimal growth temperatures were 0.7°C higher in experimental populations selected at 26.3°C than those selected at 15.0°C. An additional negative effect of high pCO2 on maximal growth rate (8% decrease relative to lowest level) was observed. Finally, the maximum persistence temperature (Tmax) differed by 1-3°C between experimental treatments, as a result of an interaction between pCO2 and the temperature selection. Taken together, we demonstrate that several attributes of thermal reaction norms in phytoplankton may change faster than the predicted progression of ocean warming.

Formato

text/tab-separated-values, 1618 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.856736

doi:10.1594/PANGAEA.856736

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Listmann, Luisa; Leroch, Maxime; Schlüter, Lothar; Thomas, Midrul K; Reusch, Thorsten BH (2016): Swift thermal reaction norm evolution in a key marine phytoplankton species. Evolutionary Applications, n/a-n/a, doi:10.1111/eva.12362

Palavras-Chave #BIOACID; Biological Impacts of Ocean Acidification; Cell size; Growth rate; Replicate; Salinity; Species; Temperature, water; Treatment
Tipo

Dataset