982 resultados para topological field theory
Resumo:
Esta pesquisa investiga o contexto social do desenvolvimento da produção científica contábil brasileira, defendendo a tese de que os agentes, no decorrer do processo de divulgação de suas investigações, estão priorizando aspectos produtivistas e quantitativos e, consequentemente, deixando em segundo plano a preocupação qualitativa e epistemológica [vigilância crítica] de tal produção. Fundamentado na Teoria de Campos de Pierre Bourdieu, este estudo busca relacionar a socialização acadêmica, o habitus dos agentes imbricados no campo, a distribuição do capital científico na área contábil e as características epistemológicas das publicações científicas da área, para obtenção das evidências sobre a problemática levantada. Trata-se de um levantamento operacionalizado por meio de entrevista semiestruturada, com uma amostra de 9 respondentes e estudo documental, com uma amostra de 43 artigos. Os dados foram analisados com emprego da técnica de análise de conteúdo. Apoiando-se em Bourdieu (2004, 2008, 2009, 2011, 2013) foram encontradas evidências de que as teorias, conceitos, metodologias, técnicas e demais escolhas realizadas pelos pesquisadores da área contábil, na maioria das vezes, não passam de manobras estratégicas que visam conquistar, reforçar, assegurar ou derrubar o monopólio da autoridade científica, visando a obtenção de maior poder simbólico no campo. Com relação ao habitus dos agentes pertencentes ao campo científico contábil, constatou-se uma tendência ao produtivismo em consequência das determinações dos órgãos reguladores da pesquisa em contabilidade (CAPES) e das lutas simbólicas travadas no campo para obtenção da autoridade científica. No tocante à socialização acadêmica, reforçou-se a presença de condutas produtivistas, por meio dos programas de pós-graduação stricto sensu, que repassam aos agentes as regras do jogo científico, doutrinando-os na maneira de publicar grande quantidade de comunicações em pouco tempo e com menos custos. As análises epistemológicas puderam triangular os dois últimos constructos, a fim de lhes dar validade, e evidenciaram uma preferência por temáticas que envolvem a contabilidade destinada aos usuários externos e procedimentos contábeis destinados ao mercado financeiro, privilegiando a utilização de dados secundários, por meio de pesquisas documentais. Em termos metodológicos, constatou-se a presença unânime de estudos positivistas, com alguns aspectos empiristas, mostrando uma ausência de inovação em termos de pesquisas norteadas por abordagens metodológicas alternativas e utilização de modelos econométricos para explicar a realidade observada sem teoria para embasar e explicar esses modelos. Por fim, a distribuição do capital simbólico no campo, mostrou que individualmente nenhum agente desponta com maior capital científico, mas, institucionalmente, a FEA/USP ocupa essa posição de destaque. Por conseguinte, pôde-se concluir que o campo científico contábil permanece estagnado e sem grandes modificações teóricas, pelo fato do produtivismo e das lutas simbólicas no interior do campo; fatos esses que, de certa maneira, motivaram a criação de uma espécie de \"receita mágica para publicar\" ou \"formato ideal\" legitimado, institucionalizado e difícil de ser modificado, a não ser que ocorra uma revolução científica que mude o paradigma existente
Resumo:
We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.
Resumo:
An electronic phase with coexisting magnetic and ferroelectric order is predicted for graphene ribbons with zigzag edges. The electronic structure of the system is described with a mean-field Hubbard model that yields results very similar to those of density functional calculations. Without further approximations, the mean-field theory is recasted in terms of a BCS wave function for electron-hole pairs in the edge bands. The BCS coherence present in each spin channel is related to spin-resolved electric polarization. Although the total electric polarization vanishes, due to an internal phase locking of the BCS state, strong magnetoelectric effects are expected in this system. The formulation naturally accounts for the two gaps in the quasiparticle spectrun, Δ0 and Δ1, and relates them to the intraband and interband self-energies.
Resumo:
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N noninteracting sites connecting both of them. The interdot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of a small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the interdot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dot spins by the spin in the finite chain at the Fermi level. As the coupling to the interdot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multiconfigurational Lanczos calculations and finite-U slave-boson mean-field theory at T=0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
For many strongly correlated metals with layered crystal structure the temperature dependence of the interlayer resistance is different to that of the intralayer resistance. We consider a small polaron model which exhibits this behavior, illustrating how the interlayer transport is related to the coherence of quasiparticles within the layers. Explicit results are also given for the electron spectral function, interlayer optical conductivity, and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and the other incoherent (dominant at high temperatures).
Resumo:
This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.
Resumo:
The Cunningham project seeks to factor numbers of the form bn±1 with b = 2, 3, . . . small. One of the most useful techniques is Aurifeuillian Factorization whereby such a number is partially factored by replacing bn by a polynomial in such a way that polynomial factorization is possible. For example, by substituting y = 2k into the polynomial factorization (2y2)2+1 = (2y2−2y+1)(2y2+2y+1) we can partially factor 24k+2+1. In 1962 Schinzel gave a list of such identities that have proved useful in the Cunningham project; we believe that Schinzel identified all numbers that can be factored by such identities and we prove this if one accepts our definition of what “such an identity” is. We then develop our theme to similarly factor f(bn) for any given polynomial f, using deep results of Faltings from algebraic geometry and Fried from the classification of finite simple groups.
Resumo:
We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entanglement in the ground state of one-dimensional quantum systems is quantified using the Renyi entropy S-alpha, which includes the von Neumann entropy (alpha -> 1) and the single-copy entanglement (alpha ->infinity) as special cases. We identify the contribution of the boundaries to the Renyi entropy, and show that there is an entanglement loss along boundary renormalization group (RG) flows. This property, which is intimately related to the Affleck-Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density matrix along the boundary RG flows. We also point out that the bulk contribution to the single-copy entanglement is half of that to the von Neumann entropy, whereas the boundary contribution is the same.
Resumo:
We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.