977 resultados para solvent free
Resumo:
A method for acylation for heteroarenes under metal-free conditions has been described using NCS as an additive and TBHP as an oxidant. This method has been successfully employed in acylation of a variety of aldehyde with heteroarenes. The application of the method has been illustrated in synthesizing isoquinoline derived natural products. This strategy provides an efficient, mild and inexpensive method for acylation of heteroarenes. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 degrees C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.
Resumo:
We report here the first general method for the geminal diamination and an intermolecular metal-free, geminal aminooxygenation of vinylarenes using hypervalent iodine reagent. A new m-CPBA mediated geminal aminooxygenation is also reported. A novel reagent-switch for the control of migrating group by controlling the two independent geminal addition paths is developed. Deuterium labelling studies and the control studies have provided unambiguous evidences for the phenyl migration and hydride migration in the oxidative geminal difunctionalization process mediated by Phl(OCOCF3)(2) and m-CPBA, respectively through a semi-pinacol rearrangement. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Two shape-persistent covalent cages (CC1(r) and CC2(r)) have been devised from triphenyl amine-based trialdehydes and cyclohexane diamine building blocks utilizing the dynamic imine chemistry followed by imine bond reduction. The cage compounds have been characterized by several spectroscopic techniques which suggest that CC1(r) and CC2(r) are 2+3] and 8+12] self-assembled architectures, respectively. These state-of-the-art molecules have a porous interior and stable aromatic backbone with multiple palladium binding sites to engineer the controlled synthesis and stabilization of ultrafine palladium nanoparticles (PdNPs). As-synthesized cage-embedded PdNPs have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). Inductively coupled plasma optical emission spectrometry reveals that Pd@CC1(r) and Pd@CC2(r) have 40 and 25 wt% palladium loading, respectively. On the basis of TEM analysis, it has been estimated that as small as similar to 1.8 nm PdNPs could be stabilized inside the CC1(r), while larger CC2(r) could stabilize similar to 3.7 nm NPs. In contrast, reduction of palladium salts in the absence of the cages form structure less agglomerates. The well-dispersed cage-embedded NPs exhibit efficient catalytic performance in the cyanation of aryl halides under heterogeneous, additive-free condition. Moreover, these materials have excellent stability and recyclability without any agglomeration of PdNPs after several cycles.
Resumo:
The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 degrees C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.
Resumo:
Computer Assisted Assessment (CAA) has been existing for several years now. While some forms of CAA do not require sophisticated text understanding (e.g., multiple choice questions), there are also student answers that consist of free text and require analysis of text in the answer. Research towards the latter till date has concentrated on two main sub-tasks: (i) grading of essays, which is done mainly by checking the style, correctness of grammar, and coherence of the essay and (ii) assessment of short free-text answers. In this paper, we present a structured view of relevant research in automated assessment techniques for short free-text answers. We review papers spanning the last 15 years of research with emphasis on recent papers. Our main objectives are two folds. First we present the survey in a structured way by segregating information on dataset, problem formulation, techniques, and evaluation measures. Second we present a discussion on some of the potential future directions in this domain which we hope would be helpful for researchers.
Resumo:
Sn4+-doped In2O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8nm, 10% Sn4+) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3)(3)OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around =1950nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (approximate to 35mcm(-1)). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems.
Resumo:
Nanocrystalline powders of Ba1-xMgxZr0.1Ti0.9O3 (x = 0.025-0.1) were synthesized via citrate assisted sol-gel method. Interestingly, the one with x = 0.05 in the system Ba1-xMgxZr0.1Ti0.9O3 exhibited fairly good piezoelectric response aside from the other physical properties. The phase and structural confirmation of synthesized powder was established by X-ray powder diffraction (XRD) and Raman Spectroscopic techniques. Two distinct Raman bands i.e., 303 and 723 cm(-1) characteristic of tetragonal phase were observed. Thermogravimetric analysis (TGA) was performed to evaluate the phase decomposition of the as-synthesized Ba0.95Mg0.05Zr0.1Ti0.9O3 sample as a function of temperature. The average crystallite size associated with Ba0.95Mg0.05Zr0.1Ti0.9O3 was calculated using Scherrer formula based on the XRD data and was found to be 25 nm. However, Scanning and Transmission Electron Microscopy studies revealed the average crystallite size to be in the range of 30-40 nm, respectively. Kubelka-Munk function was employed to determine the optical band gap of these nanocrystallites. A piezoelectric response of 26 pm/V was observed for Ba0.95Mg0.05Zr0.1Ti0.9O3 nanocrystal by Piezoresponse Force Microscopy (PFM) technique. Photoluminescence (PL) study carried out on these nanocrystals exhibited a blue emission (470 nm) at room temperature.
Resumo:
Dynamics of contact free (levitated) drying of nanofluid droplets is ubiquitous in many application domains ranging from spray drying to pharmaceutics. Controlling the final morphology (macro to micro scales) of the dried out sample poses some serious challenges. Evaporation of solvent and agglomeration of particles leads to porous shell formation in acoustically levitated nanosilica droplets. The capillary pressure due to evaporation across the menisci at the nanoscale pores causes buckling of the shell which leads to ring and bowl shaped final structures. Acoustics plays a crucial role in flattening of droplets which is a prerequisite for initiation of buckling in the shell: Introduction of mixed nanocolloids (sodium dodecyl sulfate + nanosilica) reduces evaporation rate, disrupts formation of porous shell, and enhances mechanical strength of the shell, all of which restricts the process of buckling. Although buckling is completely arrested in such surfactant added droplets, controlled external heating using laser enhances evaporation through the pores in the shell due to thermally induced structural changes and rearrangement of SDS aggregates which reinitializes buckling in such droplets, Furthermore, inclusion of anilinium hydrochloride into the nanoparticle laden droplets produces ions which adsorb and modify the morphology of sodium dodecyl sulfate crystals and reinitializes buckling in the shell (irrespective of external heating conditions). The kinetics of buckling is determined by the combined effect of morphology of the colloidal particles, particle/aggregate diffusion rate within the droplet, and the rate of evaporation of water. The buckling dynamics leads to cavity formation which grows subsequently to yield final structures with drastically different morphological features. The cavity growth is controlled by evaporation through the nanoscate pores and exhibits a universal trend irrespective of heating rate and nanoparticle type.
Resumo:
Na0.5Bi0.5TiO3- based lead-free piezoelectrics exhibiting giant piezostrain are technologically interesting materials for actuator applications. The lack of clarity with regard to the structure of the nonpolar phase of this system has hindered the understanding of the structural mechanism associated with the giant piezostrain and other related phenomena. In this paper, we have investigated the structure and field-induced phase transformation behavior of a model system (0.94 - x) Na0.5Bi0.5TiO3-0.06BaTiO(3)-xK(0.5)Na(0.5)NbO(3) (0.0 <= x <= 0.025). A detailed structural analysis using neutron powder diffraction revealed that the nonpolar phase is neither cubic nor a mixture of rhombohedral (R3c) and tetragonal (P4bm) phases as commonly reported in literature but exhibits a long-period modulated structure, which is most probably of the type root 2 x root 2 x n with n = 16. Our results suggest that the giant piezoelectric strain is associated with a field-induced phase transformation of the long-period modulated structure to rhombohedral R3c structure above a critical field. We also demonstrate that the giant piezostrain is lost if the system retains a fraction of the field-induced R3c phase. A possible correlation among depolarization temperature, giant piezostrain, and its electrical fatigue behavior has also been indicated.
Resumo:
Polarization self-modulation effect in a free oscillated Nd:YAG laser is investigated after a quarter wave plate is introduced independently in the two positions of the cavity. As described in the previous experiments, the intensity components in the orthogonal directions are modulated with a period of the round-trip time or twice. Different pulse shapes reveal that the seed field from the spontaneous emission is not uniform and seems to be stochastic for each pulse.
Resumo:
Modelling free-surface flow has very important applications in many engineering areas such as oil transportation and offshore structures. Current research focuses on the modelling of free surface flow in a tank by solving the Navier-Stokes equation. An unstructured finite volume method is used to discretize the governing equations. The free surface is tracked by dynamically adapting the mesh and making it always surface conforming. A mesh-smoothing scheme based on the spring analogy is also implemented to ensure mesh quality throughout the computaiton. Studies are performed on the sloshing response of a liquid in an elastic container subjected to various excitation frequencies. Further investigations are also carried out on the critical frequency that leads to large deformation of the tank walls. Another numerical simulation involves the free-surface flow past as submerged obstacle placed in the tank to show the flow separation and vortices. All these cases demonstrate the capability of this numerical method in modelling complicated practical problems.
Resumo:
By using Lagrangian method, the flow properties of a dusty-gas point source in a supersonic free stream were studied and the particle parameters in the near-symmetry-axis region were obtained. It is demonstrated that fairly inertial particles travel along oscillating and intersecting trajectories between the bow and termination shock waves. In this region,formation of "multi-layer structure" in particle distribution with alternating low- and highdensity layers is revealed. Moreover, sharp accumulation of particles occurs near the envelopes of particle trajectories.