992 resultados para small nuclear RNP
Resumo:
We have developed and tested a new way of typing Trypanosoma cruzi, mamely the use of cloned nuclear DNA fragments as genetic markers. Restriction fragment length polymorphisms were verified on Soutern blots hybridized to random probes. Fragment patterns were analyzed and dendrograms constructed. Our results on well characterized laboratory strains correlate well to published isoenzyme studies. Some of the probes were also hybridized to chromosomes separated by pulse field gel electrophoresis a higher degree of heterogeneity was observed at this level.
Resumo:
This paper analyses the impact of different sources of finance on the growth of firms. Using panel data from Spanish manufacturing firms for the period 2000-2006, we investigate the effects of internal and external finances on firm growth. In particular, we examine three dimensions of these financial sources: a) the performance of the firms’ capital structure in accordance with firm size; b) the effects of internal and external financial sources on growth performance; c) the combined effect of equity, external debt and cash flow on firm growth. We find that low-growth firms are sensitive to cash flow and short-term bank debt, while high-growth firms are more sensitive to long-term debt. Furthermore, equity capital seems to reduce barriers to external finance. Our main conclusion is that during the start-up phase, firms are unable to increase their financial leverage and so their capital structure fails to promote correct investment strategies. However, as their equity capital increases, alternative financial mechanisms, in particular long-term debt, become available, which have a positive impact on firm growth.
Resumo:
Properties of GMM estimators for panel data, which have become very popular in the empirical economic growth literature, are not well known when the number of individuals is small. This paper analyses through Monte Carlo simulations the properties of various GMM and other estimators when the number of individuals is the one typically available in country growth studies. It is found that, provided that some persistency is present in the series, the system GMM estimator has a lower bias and higher efficiency than all the other estimators analysed, including the standard first-differences GMM estimator.
Resumo:
BACKGROUND: The Nuclear Factor I (NFI) family of DNA binding proteins (also called CCAAT box transcription factors or CTF) is involved in both DNA replication and gene expression regulation. Using chromatin immuno-precipitation and high throughput sequencing (ChIP-Seq), we performed a genome-wide mapping of NFI DNA binding sites in primary mouse embryonic fibroblasts. RESULTS: We found that in vivo and in vitro NFI DNA binding specificities are indistinguishable, as in vivo ChIP-Seq NFI binding sites matched predictions based on previously established position weight matrix models of its in vitro binding specificity. Combining ChIP-Seq with mRNA profiling data, we found that NFI preferentially associates with highly expressed genes that it up-regulates, while binding sites were under-represented at expressed but unregulated genes. Genomic binding also correlated with markers of transcribed genes such as histone modifications H3K4me3 and H3K36me3, even outside of annotated transcribed loci, implying NFI in the control of the deposition of these modifications. Positional correlation between + and - strand ChIP-Seq tags revealed that, in contrast to other transcription factors, NFI associates with a nucleosomal length of cleavage-resistant DNA, suggesting an interaction with positioned nucleosomes. In addition, NFI binding prominently occurred at boundaries displaying discontinuities in histone modifications specific of expressed and silent chromatin, such as loci submitted to parental allele-specific imprinted expression. CONCLUSIONS: Our data thus suggest that NFI nucleosomal interaction may contribute to the partitioning of distinct chromatin domains and to epigenetic gene expression regulation.NFI ChIP-Seq and input control DNA data were deposited at Gene Expression Omnibus (GEO) repository under accession number GSE15844. Gene expression microarray data for mouse embryonic fibroblasts are on GEO accession number GSE15871.
Resumo:
The crocidurine shrews include the most speciose genus of mammals, Crocidura. The origin and evolution of their radiation is, however, poorly understood because of very scant fossil records and a rather conservative external morphology between species. Here, we use an alignment of 3560 base pairs of mitochondrial and nuclear DNA to generate a phylogenetic hypothesis for the evolution of Old World shrews of the subfamily Crocidurinae. These molecular data confirm the monophyly of the speciose African and Eurasian Crocidura, which also includes the fossorial, monotypic genus Diplomesodon. The phylogenetic reconstructions give further credit to a paraphyletic position of Suncus shrews, which are placed into at least two independent clades (one in Africa and sister to Sylvisorex and one in Eurasia), at the base of the Crocidura radiation. Therefore, we recommend restricting the genus Suncus to the Palaearctic and Oriental taxa, and to consider all the African Suncus as Sylvisorex. Using molecular dating and biogeographic reconstruction analyses, we suggest a Palaearctic-Oriental origin for Crocidura dating back to the Upper Miocene (6.8 million years ago) and several subsequent colonisations of the Afrotropical region by independent lineages of Crocidura.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
BACKGROUND: To evaluate the effect of statins on the annual expansion rate (ER) of small infrarenal abdominal aortic aneurysms (AAA). PATIENTS AND METHODS: All patients under regular surveillance for small AAA between January 2000 and September 2007, in the Department of Angiology, Lausanne University Hospital, were included. Inclusion criteria were baseline abdominal aortic diameter between 25 and 55 mm, at least two measurements of AAA diameter and a minimum follow up of 6 months. Patients with Marfan disease, infectious or inflammatory AAA, and patients with prior AAA repair were excluded. The influence of statin use and other factors on ER were examined by bivariate and multivariate analysis. RESULTS: Among 589 patients who underwent an abdominal aorta evaluation, 94 patients (89 % men, mean age 69.1 years) were finally included in the analysis. Baseline AAA size was 39.9 ± 7.7 mm (mean±SE) and 48.7 ± 8.4 mm at end of follow-up. Patients had a regular aneurysm size assessment during 38.5 ± 27.7 months. Mean ER was 3.59 mm/y (± 2.81). The 50 patients who were treated with statin during the study period had a lower ER compared to the 44 controls (2.91 vs 4.37 mm/year, p = 0.01). CONCLUSIONS: This study confirms the considerable individual variations in the AAA expansion rate, and emphasizes the need for regular aortic diameter assessments. In this study, patients treated with statin demonstrate a significant decrease in the ER compared to controls. This finding need to be evaluated in prospective interventional studies powered to demonstrate the potential benefit of statin treatment.
Resumo:
We demonstrate that the cccB gene, identified in the Bacillus subtilis genome sequence project, is the structural gene for a 10-kDa membrane-bound cytochrome c(551) lipoprotein described for the first time in B. subtilis. Apparently, CccB corresponds to cytochrome c(551) of the thermophilic bacterium Bacillus PS3. The heme domain of B. subtilis cytochrome c(551) is very similar to that of cytochrome c(550), a protein encoded by the cccA gene and anchored to the membrane by a single transmembrane polypeptide segment. Thus, B. subtilis contains two small, very similar, c-type cytochromes with different types of membrane anchors. The cccB gene is cotranscribed with the yvjA gene, and transcription is repressed by glucose. Mutants deleted for cccB or yvjA-cccB show no apparent growth, sporulation, or germination defect. YvjA is not required for the synthesis of cytochrome c(551), and its function remains unknown.
Resumo:
SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.
Resumo:
The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].
Resumo:
In this article, we present a new approach of Nekhoroshev theory for a generic unperturbed Hamiltonian which completely avoids small divisors problems. The proof is an extension of a method introduced by P. Lochak which combines averaging along periodic orbits with simultaneous Diophantine approximation and uses geometric arguments designed by the second author to handle generic integrable Hamiltonians. This method allows to deal with generic non-analytic Hamiltonians and to obtain new results of generic stability around linearly stable tori.