864 resultados para second-generation migrants
Resumo:
We demonstrate a compact all-room-temperature picosecond laser source broadly tunable in the visible spectral region between 600 nm and 627 nm. The tunable radiation is obtained by frequency-doubling of a tunable quantum-dot external-cavity mode-locked laser in a periodically-poled KTP multimode waveguide. In this case, utilization of a significant difference in the effective refractive indices of the high- and low-order modes enables to match the period of poling in a very broad wavelength range. The maximum achieved second harmonic output peak power is 3.25 mW at 613 nm for 71.43 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%. © 2013 Copyright SPIE.
Resumo:
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting subnanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves. © 2014 Optical Society of America.
Resumo:
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
Resumo:
This work is part of a bigger project which aims to research the potential development of commercial opportunities for the re-use of batteries after their use in low carbon vehicles on an electricity grid or microgrid system. There are three main revenue streams (peak load lopping on the distribution Network to allow for network re-enforcement deferral, National Grid primary/ secondary/ high frequency response, customer energy management optimization). These incomes streams are dependent on the grid system being present. However, there is additional opportunity to be gained from also using these batteries to provide UPS backup when the grid is no longer present. Most UPS or ESS on the market use new batteries in conjunction with a two level converter interface. This produces a reliable backup solution in the case of loss of mains power, but may be expensive to implement. This paper introduces a modular multilevel cascade converter (MMCC) based ESS using second-life batteries for use on a grid independent industrial plant without any additional onsite generator as a potentially cheaper alternative. The number of modules has been designed for a given reliability target and these modules could be used to minimize/eliminate the output filter. An appropriate strategy to provide voltage and frequency control in a grid independent system is described and simulated under different disturbance conditions such as load switching, fault conditions or a large motor starting. A comparison of the results from the modular topology against a traditional two level converter is provided to prove similar performance criteria. The proposed ESS and control strategy is an acceptable way of providing backup power in the event of loss of grid. Additional financial benefit to the customer may be obtained by using a second life battery in this way.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.
Resumo:
Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.
Resumo:
The purpose of this qualitative study was to explore the academic and nonacademic experiences of self-identified first-generation college students who left college before their second year. The study sought to find how the experiences might have affected the students' decision to depart. The case study method was used to investigate these college students who attended Florida International University. Semi-structured interviews were conducted with six ex-students who identified themselves as first-generation college students. The narrative data from the interviews were transcribed, coded, and analyzed. Analysis was informed by Pascarella, Pierson, Wolniak, and Terenzini's (2004) theoretical framework of important college academic and nonacademic experiences. An audit trail was kept and the data was triangulated by using multiple sources to establish certain findings. The most critical tool for enhancing trustworthiness was the use of member checking. I also received ongoing feedback from my major professor and committee throughout the dissertation process. The participants reported the following academic experiences: (a) patterns of coursework; (b) course-related interactions with peers; (c) relationships with faculty; (d) class size; (e) academic advisement; (f) orientation and peer advisors; and (e) financial aid. The participants reported the following nonacademic experiences; (f) on- or off- campus employment; (g) on- or off-campus residence; (h) participation in extracurricular activities; (i) noncourse-related peer relationships; (j) commuting and parking; and (k) FIU as an HSI. Isolationism and poor fit with the university were the most prevalent reasons for departure. The reported experiences of these first-generation college students shed light on those experiences that contributed to their departure. University administrators should give additional attention to these stories in an effort to improve retention strategies for this population. All but two of the participants went on to enroll in other institutions and reported good experiences with their new institutions. Recommendations are provided for continued research concerning how to best meet the needs of college students like the participants; students who have not learned from their parents about higher education financial aid, academic advisement, and orientation.
Resumo:
Hispanic Generation 1.5 students are foreign-born, U.S. high school graduates who are socialized in the English dominant K-12 school system while still maintaining the native language and culture at home (Allison, 2006; Blumenthal, 2002; Harklau, Siegal, & Losey, 1999; Rumbault & Ima, 1988). When transitioning from high school to college, these students sometimes assess into ESL courses based on their English language abilities, and because of this ESL placement, Hispanic Generation 1.5 students might have different engagement experiences than their mainstream peers. Engagement is a critical factor in student success and long-term retention because students’ positive and negative engagement experiences affect their membership and sense of belonging at the institution. The purpose of this study was to describe the engagement and membership experiences of Hispanic Generation 1.5 students’ at a Massachusetts community college. This study employed naturalistic inquiry within an embedded descriptive case study design that included three units of analysis: the students’ engagement experiences in (a) ESL courses, (b) developmental courses, and (c) mainstream courses. The main source of data was in-depth interviews with Hispanic Generation 1.5 students at Commonwealth of Massachusetts Community College. Criterion sampling was used to select the interview participants, ensuring that all participants were native Spanish speakers and were taking or had taken at least one ESL course at the institution. The study findings show that these Hispanic Generation 1.5 students at the college did not perceive peer engagement as critical to academic success. Most times the participants avoided peer engagement outside of the classroom, especially with fellow Hispanic students, who they felt would deter them from their English language development and general academic work. Engagement with ESL faculty and ESL academic support staff played the most critical role in the participants’ sense of belonging and success, and students who were required to engage with faculty and academic support staff outside of the classroom were the most satisfied with their educational experiences. While the participants were all disappointed with some aspect of their ESL placement, they valued the ESL engagement experiences more than the engagement experiences while completing developmental and credit coursework.
Resumo:
The economic development of any region involves some consequences to the environment. The choice of a socially optimal development plan must consider a measure of the strategy's environmental impact. This dissertation tackles this problem by examining environmental impacts of new production activities. The study uses the experience of the Carajás region in the north of Brazil. This region, which prior to the 1960's was an isolated outpost of the Amazon area, was integrated to the rest of the country with a non-sophisticated but strategic road system and eventually became the second largest iron ore mining area in the world. Finally, in the 1980's, the area was linked, by way of a railroad, to the nearest seaport along the Atlantic Ocean. The consequence of such changes was a burst of economic growth along the railroad Corridor and neighboring areas. In this work, a Social Accounting Matrix (SAM) is used to construct a 2-region (Corridor and surrounding area), fixed price, Computable General Equilibrium (CGE) Model to examine the relationship between production and pollution by measuring the different pollution effects of alternative growth strategies. SAMs are a very useful tool to examine the environmental impacts of development by linking production activities to measurable indices of natural resource degradation. The simulation results suggest that the strategies leading to faster economic growth in the short run are also those that lead to faster rates of environmental degradation. The simulations also show that the strategies that leads to faster rates of short run growth do so at the price of a rate of environmental depletion that is unsustainable from a long run perspective. These results, therefore, support the concern expressed by environmental economists and policy makers regarding the possible trade-offs between economic growth and environmental preservation. This stresses the need for a careful analysis of the environmental impacts of alternative growth strategies. ^
Resumo:
Personalized recommender systems aim to assist users in retrieving and accessing interesting items by automatically acquiring user preferences from the historical data and matching items with the preferences. In the last decade, recommendation services have gained great attention due to the problem of information overload. However, despite recent advances of personalization techniques, several critical issues in modern recommender systems have not been well studied. These issues include: (1) understanding the accessing patterns of users (i.e., how to effectively model users' accessing behaviors); (2) understanding the relations between users and other objects (i.e., how to comprehensively assess the complex correlations between users and entities in recommender systems); and (3) understanding the interest change of users (i.e., how to adaptively capture users' preference drift over time). To meet the needs of users in modern recommender systems, it is imperative to provide solutions to address the aforementioned issues and apply the solutions to real-world applications. ^ The major goal of this dissertation is to provide integrated recommendation approaches to tackle the challenges of the current generation of recommender systems. In particular, three user-oriented aspects of recommendation techniques were studied, including understanding accessing patterns, understanding complex relations and understanding temporal dynamics. To this end, we made three research contributions. First, we presented various personalized user profiling algorithms to capture click behaviors of users from both coarse- and fine-grained granularities; second, we proposed graph-based recommendation models to describe the complex correlations in a recommender system; third, we studied temporal recommendation approaches in order to capture the preference changes of users, by considering both long-term and short-term user profiles. In addition, a versatile recommendation framework was proposed, in which the proposed recommendation techniques were seamlessly integrated. Different evaluation criteria were implemented in this framework for evaluating recommendation techniques in real-world recommendation applications. ^ In summary, the frequent changes of user interests and item repository lead to a series of user-centric challenges that are not well addressed in the current generation of recommender systems. My work proposed reasonable solutions to these challenges and provided insights on how to address these challenges using a simple yet effective recommendation framework.^
Resumo:
The conventional mechanism of fermion mass generation in the Standard Model involves Spontaneous Symmetry Breaking (SSB). In this thesis, we study an alternate mechanism for the generation of fermion masses that does not require SSB, in the context of lattice field theories. Being inherently strongly coupled, this mechanism requires a non-perturbative approach like the lattice approach.
In order to explore this mechanism, we study a simple lattice model with a four-fermion interaction that has massless fermions at weak couplings and massive fermions at strong couplings, but without any spontaneous symmetry breaking. Prior work on this type of mass generation mechanism in 4D, was done long ago using either mean-field theory or Monte-Carlo calculations on small lattices. In this thesis, we have developed a new computational approach that enables us to perform large scale quantum Monte-Carlo calculations to study the phase structure of this theory. In 4D, our results confirm prior results, but differ in some quantitative details of the phase diagram. In contrast, in 3D, we discover a new second order critical point using calculations on lattices up to size $ 60^3$. Such large scale calculations are unprecedented. The presence of the critical point implies the existence of an alternate mechanism of fermion mass generation without any SSB, that could be of interest in continuum quantum field theory.
Resumo:
Bioscience subjects require a significant amount of training in laboratory techniques to produce highly skilled science graduates. Many techniques which are currently used in diagnostic, research and industrial laboratories require expensive equipment for single users; examples of which include next generation sequencing, quantitative PCR, mass spectrometry and other analytical techniques. The cost of the machines, reagents and limited access frequently preclude undergraduate students from using such cutting edge techniques. In addition to cost and availability, the time taken for analytical runs on equipment such as High Performance Liquid Chromatography (HPLC) does not necessarily fit with the limitations of timetabling. Understanding the theory underlying these techniques without the accompanying practical classes can be unexciting for students. One alternative from wet laboratory provision is to use virtual simulations of such practical which enable students to see the machines and interact with them to generate data. The Faculty of Science and Technology at the University of Westminster has provided all second and third year undergraduate students with iPads so that these students all have access to a mobile device to assist with learning. We have purchased licences from Labster to access a range of virtual laboratory simulations. These virtual laboratories are fully equipped and require student responses to multiple answer questions in order to progress through the experiment. In a pilot study to look at the feasibility of the Labster virtual laboratory simulations with the iPad devices; second year Biological Science students (n=36) worked through the Labster HPLC simulation on iPads. The virtual HPLC simulation enabled students to optimise the conditions for the separation of drugs. Answers to Multiple choice questions were necessary to progress through the simulation, these focussed on the underlying principles of the HPLC technique. Following the virtual laboratory simulation students went to a real HPLC in the analytical suite in order to separate of asprin, caffeine and paracetamol. In a survey 100% of students (n=36) in this cohort agreed that the Labster virtual simulation had helped them to understand HPLC. In free text responses one student commented that "The terminology is very clear and I enjoyed using Labster very much”. One member of staff commented that “there was a very good knowledge interaction with the virtual practical”.
Resumo:
This research paper presents a five step algorithm to generate tool paths for machining Free form / Irregular Contoured Surface(s) (FICS) by adopting STEP-NC (AP-238) format. In the first step, a parametrized CAD model with FICS is created or imported in UG-NX6.0 CAD package. The second step recognizes the features and calculates a Closeness Index (CI) by comparing them with the B-Splines / Bezier surfaces. The third step utilizes the CI and extracts the necessary data to formulate the blending functions for identified features. In the fourth step Z-level 5 axis tool paths are generated by adopting flat and ball end mill cutters. Finally, in the fifth step, tool paths are integrated with STEP-NC format and validated. All these steps are discussed and explained through a validated industrial component.