6 resultados para second-generation migrants

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Meeting the world's growing energy demands while protecting our fragile environment is a challenging issue. Second generation biofuels are liquid fuels like long-chain alcohols produced from lignocellulosic biomass. To reduce the cost of biofuel production, we engineered fungal family 6 cellobiohydrolases (Cel6A) for enhanced thermostability using random mutagenesis and recombination of beneficial mutations. During long-time hydrolysis, engineered thermostable cellulases hydrolyze more sugars than wild-type Cel6A as single enzymes and binary mixtures at their respective optimum temperatures. Engineered thermostable cellulases exhibit synergy in binary mixtures similar to wild-type cellulases, demonstrating the utility of engineering individual cellulases to produce novel thermostable mixtures. Crystal structures of the engineered thermostable cellulases indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by proline substitutions. At high temperature, free cysteines contribute to irreversible thermal inactivation in engineered thermostable Cel6A and wild-type Cel6A. The mechanism of thermal inactivation in this cellulase family is consistent with disulfide bond degradation and thiol-disulfide exchange. Enhancing the thermostability of Cel6A also increases tolerance to pretreatment chemicals, demonstrated by the strong correlation between thermostability and tolerance to 1-ethyl-3-methylimidazolium acetate. Several semi-rational protein engineering approaches – on the basis of consensus sequence analysis, proline stabilization, FoldX energy calculation, and high B-factors – were evaluated to further enhance the thermostability of Cel6A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecules that inhibit DNA dependent processes are the most commonly used agents for the treatment of cancer. The genotoxicity associated with their mechanisms of action, unfortunately, make them extremely toxic to the patient and cancer cells alike. The work presented in this thesis outlines the development of Py-Im polyamides as non-genotoxic DNA-targeted antitumor molecules that interfere with RNA polymerase II elongation. We initially characterized the pharmacokinetic profiles of two hairpin polyamides to establish their bioavailability in the serum and tissues after a single administration. We next determined the molecular mechanism that contributes to toxicity of a hairpin polyamide in human prostate cancer cells in cell culture and we demonstrated antitumor effects of the compound against LNCaP xenografts in mice. Finally, we conducted animal toxicity experiments on 4 polyamides that vary on the gamma-turn with respect to the substitution of amino and acetamide groups at the alpha and beta positions. From this study we identified a second generation compound that retains antitumor activity with significantly reduce animal toxicity. This work sets the foundation for the development of Py-Im polyamides as DNA targeted therapeutics for the treatment of advanced prostate cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors, one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is described and analyzed in Chapter 2. This design (due to Braginsky, Gorodetsky, Khalili, and Thorne) is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and used to show (in accord with the speed being a quantum nondemolition observable) that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies . However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation.

Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires only a modest input power and appears to be a fully practical candidate for third-generation LIGO. It can beat the SQL (the approximate sensitivity of second-generation LIGO interferometers) over a broad range of frequencies (~ 10 to 100 Hz in practice) by a factor h/hSQL ~ √W^(SQL)_(circ)/Wcirc. Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz (the LIGO-II power). If squeezed vacuum (with a power-squeeze factor e-2R) is injected into the interferometer's output port, the SQL can be beat with a much reduced laser power: h/hSQL ~ √W^(SQL)_(circ)/Wcirce-2R. For realistic parameters (e-2R ≃ 10 and Wcirc ≃ 800 to 2000 kW), the SQL can be beat by a factor ~ 3 to 4 from 10 to 100 Hz. [However, as the power increases in these expressions, the speed meter becomes more narrow band; additional power and re-optimization of some parameters are required to maintain the wide band.] By performing frequency-dependent homodyne detection on the output (with the aid of two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz.

Chapters 2 and 3 are part of an ongoing effort to develop a practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising third- generation interferometric gravitational-wave detector that entails low laser power.

Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves for LIGO. Specifically, it presents an analysis of the tidal work done on a self-gravitating body (e.g., a neutron star or black hole) in an external tidal field (e.g., that of a binary companion). The change in the mass-energy of the body as a result of the tidal work, or "tidal heating," is analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interaction energy contained within the body's local asymptotic rest frame is gauge dependent. This is analogous to Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy, but the work done on the body is independent of that localization. These conclusions play a role in analyses, by others, of the dynamics and stability of the inspiraling neutron-star binaries whose gravitational waves are likely to be seen and studied by LIGO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.

During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.

It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.

In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.

Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laboratory chamber experiments are used to investigate formation of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors under a variety of environmental conditions. Simulations of these experiments test our understanding of the prevailing chemistry of SOA formation as well as the dynamic processes occurring in the chamber itself. One dynamic process occurring in the chamber that was only recently recognized is the deposition of vapor species to the Teflon walls of the chamber. Low-volatility products formed from the oxidation of volatile organic compounds (VOCs) deposit on the walls rather than forming SOA, decreasing the amount of SOA formed (quantified as the SOA yield: mass of SOA formed per mass of VOC reacted). In this work, several modeling studies are presented that address the effect of vapor wall deposition on SOA formation in chambers.

A coupled vapor-particle dynamics model is used to examine the competition among the rates of gas-phase oxidation to low volatility products, wall deposition of these products, and mass transfer to the particle phase. The relative time scales of these rates control the amount of SOA formed by affecting the influence of vapor wall deposition. Simulations show that an effect on SOA yield of changing the vapor-particle mass transfer rate is only observed when SOA formation is kinetically limited. For systems with kinetically limited SOA formation, increasing the rate of vapor-particle mass transfer by increasing the concentration of seed particles is an effective way to minimize the effect of vapor wall deposition.

This coupled vapor-particle dynamics model is then applied to α-pinene ozonolysis SOA experiments. Experiments show that the SOA yield is affected when changing the oxidation rate but not when changing the rate of gas-particle mass transfer by changing the concentration of seed particles. Model simulations show that the absence of an effect of changing the seed particle concentration is consistent with SOA formation being governed by quasi-equilibrium growth, in which gas-particle equilibrium is established much faster than the rate of change of the gas-phase concentration. The observed effect of oxidation rate on SOA yield arises due to the presence of vapor wall deposition: gas-phase oxidation products are produced more quickly and condense preferentially onto seed particles before being lost to the walls. Therefore, for α-pinene ozonolysis, increasing the oxidation rate is the most effective way to mitigate the influence of vapor wall deposition.

Finally, the detailed model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to simulate α-pinene photooxidation SOA experiments. Unexpectedly, α-pinene OH oxidation experiments show no effect when changing either the oxidation rate or the vapor-particle mass transfer rate, whereas GECKO-A predicts that changing the oxidation rate should drastically affect the SOA yield. Sensitivity studies show that the assumed magnitude of the vapor wall deposition rate can greatly affect conclusions drawn from comparisons between simulations and experiments. If vapor wall loss in the Caltech chamber is of order 10-5 s-1, GECKO-A greatly overpredicts SOA during high UV experiments, likely due to an overprediction of second-generation products. However, if instead vapor wall loss in the Caltech chamber is of order 10-3 s-1, GECKO-A greatly underpredicts SOA during low UV experiments, possibly due to missing autoxidation pathways in the α-pinene mechanism.