997 resultados para robot interaction
Resumo:
Previous studies of the local involvement of multinational corporation (MNC) subsidiaries focus on host-country firms and local business partners such as suppliers and customers. The role of host-country universities in the same context of innovation networks is neglected. Furthermore, there are many organizational culture- and knowledge-related differences between universities and companies, and this is likely to pose additional challenges for successful collaboration. Early university-industry (U-I) studies have primarily been limited within a national boundary, being concerned with a single level of culture (i.e., at an organizational level) and one-way knowledge transfer from university to industry. Research on more dynamic knowledge interaction in multinational settings is lacking. This is particularly true in the business context of China. In today’s globalizing and rapidly changing organizations, addressing cultural differences and clashes is an everyday reality, and inter-cultural U-I collaboration is becoming a key asset for gaining global competitiveness. This study deals with Finnish MNC subsidiaries’ research collaboration with Chinese universities. It aims to explore the essence of such U-I collaboration and knowledge interaction, uncovering the deep functioning mechanisms of culture underlying effective collaborative knowledge creation and innovation. The study reviews critically different bodies of literature including knowledge management theories and studies, U-I collaboration and knowledge interaction, and cross-cultural research in terms of organizational knowledge generation and utilization. It adopts a case study strategy with qualitative research methods, and data is collected through in-depth interviews and participant observation. The study presents the following major findings: 1. In the light of a comprehensive analysis of U-I collaboration, an effective matching strategy is proposed, in the assumption that good alignment of knowledge interaction strategies and approaches with their corresponding knowledge type, capability development and research task may greatly enhance the effectiveness of cross-cultural U-I collaboration and knowledge interaction. 2. It is proposed that in the Chinese MNC context more dynamic types of knowledge interaction like knowledge co-creation should be of key concern particularly when dealing simultaneously with multi-disciplinary applied research of human factors and technologies. U-I knowledge interaction, otherwise, pays attention only to the study of one-way technology and knowledge transfer. 3. It is posited that the influence of culture on collaborative knowledge interaction can be studied in a valuable way when knowledge-related variables are simultaneously taken into account. A systematic analysis of the role of knowledge in cross-cultural knowledge interaction could best be approached from multi-aspects of knowledge including not only nature, characteristics and types of knowledge but also the process of knowledge (e.g., intensifications of knowledge interaction). 4. The study demonstrates the significant role of aspects of the host-country culture (e.g., Chinese guanxi) in U-I collaboration and knowledge interaction. This is evident, for instance, in issues related to interpersonal relationships and trust, true interest and the relatedness of the research, mutual commitment and learning, communication intensity and interaction, and awareness of cultural and knowledge-related differences between collaboration partners. Theoretical and practical implications of the findings are suggested and discussed.
Resumo:
In this Thesis the interaction of an electromagnetic field and matter is studied from various aspects in the general framework of cold atoms. Our subjects cover a wide spectrum of phenomena ranging from semiclassical few-level models to fully quantum mechanical interaction with structured reservoirs leading to non-Markovian open quantum system dynamics. Within closed quantum systems, we propose a selective method to manipulate the motional state of atoms in a time-dependent double-well potential and interpret the method in terms of adiabatic processes. Also, we derive a simple wave-packet model, based on distributions of generalized eigenstates, explaining the finite visibility of interference in overlapping continuous-wave atom lasers. In the context of open quantum systems, we develop an unraveling of non-Markovian dynamics in terms of piecewise deterministic quantum jump processes confined in the Hilbert space of the reduced system - the non-Markovian quantum jump method. As examples, we apply it for simple 2- and 3-level systems interacting with a structured reservoir. Also, in the context of ion-cavity QED we study the entanglement generation based on collective Dicke modes in experimentally realistic conditions including photonic losses and an atomic spontaneous decay.
Resumo:
In the fierce competition of today‟s business world an organization‟s capacity to learn maybe its only competitive advantage. This research aims at increasing the understanding on how organizational learning from the customer happens in technology companies. In doing so it provides a synthesized definition of organizational learning and investigates processes of organizational learning within technology companies. A qualitative research method and in-depth interviews with different sized high technology companies, as applied here, enables in-depth study of the learning processes. Research contributes to the understanding of what type of knowledge firms acquire, how new knowledge is transferred and used in a learning firm‟s routines and processes. Research findings show that SMEs and large size companies also, depending on their position in the software value chain, consider different knowledge types as most important and that they use different learning methods to acquire knowledge from their customers.
Resumo:
This work aimed to evaluate root colonization and interaction among isolates of rhizobacteria and eucalypt species. The method used to evaluate "in vitro" root colonization was able to indicate if the effect was benefic or deleterious allowing to pre-select isolates as potential growth promoter. There was interaction among isolates of rhizobacteria and Eucalyptus species for seed germinating and seedling growth. MF2 (Pseudomonas sp.) was the best rhizobacteria isolate for growth promotion of E. cloeziana e E. grandis. S1 (Bacillus subtilis) was the most effective for E. globulus, and Ca (Pseudomonas fulva), MF2 (Pseudomonas sp.), CIIb (Stenotrophomonas maltophilia) and S2 (B. subtilis) were the most promising isolates for the E. urophylla.
Resumo:
Traditionally simulators have been used extensively in robotics to develop robotic systems without the need to build expensive hardware. However, simulators can be also be used as a “memory”for a robot. This allows the robot to try out actions in simulation before executing them for real. The key obstacle to this approach is an uncertainty of knowledge about the environment. The goal of the Master’s Thesis work was to develop a method, which allows updating the simulation model based on actual measurements to achieve a success of the planned task. OpenRAVE was chosen as an experimental simulation environment on planning,trial and update stages. Steepest Descent algorithm in conjunction with Golden Section search procedure form the principle part of optimization process. During experiments, the properties of the proposed method, such as sensitivity to different parameters, including gradient and error function, were examined. The limitations of the approach were established, based on analyzing the regions of convergence.
Resumo:
ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.
Resumo:
Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.
Resumo:
Tutkin pro gradu -tutkielmassani englannin kielen oppijoiden pragmaattista kompetenssia. Tarkoitukseni oli selvittää, miten suomalaiset yläkoululaiset ja lukiolaiset osaavat käyttää englannin kieltä erilaisissa kommunikaatiotilanteissa. Tutkielmani voidaan sijoittaa välikielen pragmatiikan tutkimukseen. Halusin selvittää, millä tasolla suomalaisten oppijoiden pragmaattinen kompetenssi on ja kehittyykö se yläkoulun ja lukion välillä. Lisäksi tutkin, vaikuttavatko oppimisympäristö ja oppimismahdollisuudet oppijoiden kykyyn käyttää englannin kieltä. Toisin sanoen vertasin englantipainotteisilla luokilla olevia oppilaita formaalin opetuksen oppijoihin sekä tutkin, vaikuttavatko englanninkieliset vapaa-ajan aktiviteetit ja oppijoiden mahdolliset oleskelut englanninkielisissä maissa heidän pragmaattiseen kompetenssiinsa. Tutkimukseni kohderyhmä koostui yläkoulun kahdeksasluokkalaisista ja lukion toisen vuosikurssin opiskelijoista. Testasin neljä eri ryhmää, joissa oli sekä formaalissa opetuksessa olevia oppijoita (yksi ryhmä kahdeksasluokkalaisia ja yksi ryhmä toisen vuosikurssin opiskelijoita) että kielipainotteisten luokkien oppijoita (yksi ryhmä kahdeksasluokkalaisia ja yksi ryhmä toisen vuosikurssin opiskelijoita). Arvioin kohderyhmäni pragmaattista kompetenssia monivalintatestillä, jossa testattiin oppijoiden kykyä käyttää ja ymmärtää implikaatioita, tilannekohtaisia rutiineja sekä puheakteja. Taustakysymysten avulla selvitin, kuinka usein oppijat käyttivät englantia vapaa-aikanaan ja olivatko he vierailleet englanninkielisissä maissa. Tutkimustulokseni osoittavat, että suomalaisten yläkoululaisten ja lukiolaisten pragmaattinen kompetenssi oli korkea. Pragmaattinen kompetenssi kehittyi kahdeksasluokkalaisten ja lukion toisen vuosikurssin välillä. Kehitys oli suurempaa formaalissa opetuksessa kuin kielipainotteisilla luokilla. Englantipainotteisilla luokilla olevat oppilaat suoriutuivat testistä paremmin kuin formaalin opetuksen oppilaat. Tosin erot olivat tilastollisesti merkitseviä vain yläkoulussa. Tutkimuksessani siis päättelin, että vieraskielinen opetus vaikutti enemmän nuorempiin oppijoihin. Eri oppimismahdollisuudet osoittautuivat haastaviksi analysoida. Tulokset osoittivat, että vain englanninkielisessä maassa oleskelulla oli vaikutusta oppijoiden pragmaattiseen kompetenssiin. Kysyttäessä vapaa-ajan aktiviteettien merkitystä oppijat kuitenkin kertoivat, että ne auttoivat heitä testiin vastaamisessa enemmän kuin englanninopetuksessa käydyt asiat. Kouluissa tulisikin jatkossa painottaa yhä enemmän vuorovaikutteista kieltenopetusta.
Resumo:
This thesis presents a design for an asynchronous interface to Robotiq adaptive gripper s-model. Designed interface is a communication layer that works on top of modbus layer. The design contains function definitions, finite state machine and exceptions. The design was not fully implemented but enough was so that it can be used. The implementation was done with c++ in linux environment. Additionally to the implementation a simple demo program was made to show the interface is used. Also grippers closing speed and force were measured. There is also a brief introduction into robotics and robot grasping.
Resumo:
This thesis studied the issue of interaction in industrial buyer-seller relationships. The aim of the thesis was to study the interaction from the seller’s perspective, especially from a project selling company’s perspective. The purpose of the thesis was to offer suggestions for the case company on how to improve interaction. The theoretical part of the study introduced the interaction framework of buyer-seller interaction, and the concept of interaction mechanisms. The focus was on studying the seller’s ways and means to utilize the interaction mechanisms. A case study research was conducted in the empirical part of the study, in which interaction in the case company was observed at a general level and through three different projects. The case company of the study was a project selling company. The case study data was gathered through individual interviews. Content Analysis was used as a research method for analyzing the case study data. Based on the case study findings, the results were drawn. The results indicated what should be done, in order to develop interaction in the case company. Finally, suggestions were provided for the case company on how to improve interaction, and a suggested interaction model was established for the case company. Although the thesis studied the topic from the viewpoint of only one specific company, it also offers outlook for other seller companies to improve their interaction.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.
Resumo:
This paper presents an approach to the solution of moving a robot manipulator with minimum cost along a specified geometric path in the presence of obstacles. The main idea is to express obstacle avoidance in terms of the distances between potentially colliding parts. The optimal traveling time and the minimum mechanical energy of the actuators are considered together to build a multiobjective function. A simple numerical example involving a Cartesian manipulator arm with two-degree-of-freedom is described.
Resumo:
This work describes techniques for modeling, optimizing and simulating calibration processes of robots using off-line programming. The identification of geometric parameters of the nominal kinematic model is optimized using techniques of numerical optimization of the mathematical model. The simulation of the actual robot and the measurement system is achieved by introducing random errors representing their physical behavior and its statistical repeatability. An evaluation of the corrected nominal kinematic model brings about a clear perception of the influence of distinct variables involved in the process for a suitable planning, and indicates a considerable accuracy improvement when the optimized model is compared to the non-optimized one.