942 resultados para responsible fishery
Resumo:
Yellowing is an undesirable phenomenon that is common in people with white and grey hair. Because white hair has no melanin, the pigment responsible for hair colour, the effects of photodegradation are more visible in this type of hair. The origin of yellowing and its relation to photodegradation processes are not properly established, and many questions remain open in this field. In this work, the photodegradation of grey hair was investigated as a function of the wavelength of incident radiation, and its ultrastructure was determined, always comparing the results obtained for the white and black fibres present in grey hair with the results of white wool. The results presented herein indicate that the photobehaviour of grey hair irradiated with a mercury lamp or with solar radiation is dependent on the wavelength range of the incident radiation and on the initial shade of yellow in the sample. Two types of grey hair were used: (1) blended grey hair (more yellow) and (2) grey hair from a single-donor (less yellow). After exposure to a full-spectrum mercury lamp for 200 h, the blended white hair turned less yellow (the yellow-blue difference, Db(*) becomes negative, Db(*)=-6), whereas the white hair from the single-donor turned slightly yellower (Db(*)=2). In contrast, VIS+IR irradiation resulted in bleaching in both types of hair, whereas a thermal treatment (at 81 °C) caused yellowing of both types of hair, resulting in a Db(*)=3 for blended white hair and Db(*)=9 for single-donor hair. The identity of the yellow chromophores was investigated by UV-Vis spectroscopy. The results obtained with this technique were contradictory, however, and it was not possible to obtain a simple correlation between the sample shade of yellow and the absorption spectra. In addition, the results are discussed in terms of the morphology differences between the pigmented and non-pigmented parts of grey hair, the yellowing and bleaching effects of grey hair, and the occurrence of dark-follow reactions.
Resumo:
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Resumo:
Although malaria in Brazil almost exclusively occurs within the boundaries of the Amazon Region, some concerns are raised regarding imported malaria to non-endemic areas of the country, notably increased incidence of complications due to delayed diagnoses. However, although imported malaria in Brazil represents a major health problem, only a few studies have addressed this subject. A retrospective case series is presented in which 263 medical charts were analysed to investigate the clinical and epidemiological characterization of malaria cases that were diagnosed and treated at Hospital & Clinics, State University of Campinas between 1998 and 2011. Amongst all medical charts analysed, 224 patients had a parasitological confirmed diagnosis of malaria. Plasmodium vivax and Plasmodium falciparum were responsible for 67% and 30% of the infections, respectively. The majority of patients were male (83%) of a productive age (median, 37 years old). Importantly, severe complications did not differ significantly between P. vivax (14 cases, 9%) and P. falciparum (7 cases, 10%) infections. Severe malaria cases were frequent among imported cases in Brazil outside of the Amazon area. The findings reinforce the idea that P. vivax infections in Brazil are not benign, regardless the endemicity of the area studied. Moreover, as the hospital is located in a privileged site, it could be used for future studies of malaria relapses and primaquine resistance mechanisms. Finally, based on the volume of cases treated and the secondary complications, referral malaria services are needed in the non-endemic areas of Brazil for a rapid and efficient and treatment.
Resumo:
Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.
Resumo:
A tracer experiment is carried out with transgenic T (variety M 7211 RR) and non-transgenic NT (variety MSOY 8200) soybean plants to evaluate if genetic modification can influence the uptake and translocation of Fe. A chelate of EDTA with enriched stable (57)Fe is applied to the plants cultivated in vermiculite plus substrate and the (57)Fe acts as a tracer. The exposure of plants to enriched (57)Fe causes the dilution of the natural previously existing Fe in the plant compartments and then the changed Fe isotopic ratio ((57)Fe/(56)Fe) is measured using a quadrupole-based inductively coupled plasma mass spectrometer equipped with a dynamic reaction cell (DRC). Mathematical calculations based on the isotope dilution methodology allow distinguishing the natural abundance Fe from the enriched Fe (incorporated during the experiment). The NT soybean plants acquire higher amounts of Fe from natural abundance (originally present in the soil) and from enriched Fe (coming from the (57)Fe-EDTA during the experiment) than T soybean ones, demonstrating that the NT soybean plants probably absorb higher amounts of Fe, independently of the source. The percentage of newly incorporated Fe (coming from the treatment) was approximately 2.0 and 1.1% for NT and T soybean plants, respectively. A higher fraction (90.1%) of enriched Fe is translocated to upper parts, and a slightly lower fraction (3.8%) is accumulated in the stems by NT plants than by T ones (85.1%; 5.1%). Moreover, in both plants, the Fe-EDTA facilitates the transport and translocation of Fe to the leaves. The genetic modification is probably responsible for differences observed between T and NT soybean plants.
Resumo:
Sensory changes during the storage of coffee beans occur mainly due to lipid oxidation and are responsible for the loss of commercial value. This work aimed to verify how sensory changes of natural coffee and pulped natural coffee are related to the oxidative processes during 15 months of storage. During this period, changes in the content of free fatty acids (1.4-3.8 mg/g oil), TBARS values (8.8-10.2 nmol MDA/g), and carbonyl groups (2.6-3.5 nmol/mg of protein) occurred. The intensity of rested coffee flavour in the coffee brew increased (2.1-6.7) and 5-caffeoylquinic acid concentration decreased (5.2-4.6g/100g). Losses were also observed in seed viability, colour of the beans and cellular structure. All the results of the chemical analyses are coherent with the oxidative process that occurred in the grains during storage. Therefore, oxidation would be also responsible for the loss of cellular structure, seed viability and sensory changes.
Resumo:
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.
Resumo:
Pyrimidine-5'-nucleotidase type I (P5'NI) deficiency is an autosomal recessive condition that causes nonspherocytic hemolytic anemia, characterized by marked basophilic stippling and pyrimidine nucleotide accumulation in erythrocytes. We herein present two African descendant patients, father and daughter, with P5'N deficiency, both born from first cousins. Investigation of the promoter polymorphism of the uridine diphospho glucuronosyl transferase 1A (UGT1A) gene revealed that the father was homozygous for the allele (TA7) and the daughter heterozygous (TA6/TA7). P5'NI gene (NT5C3) gene sequencing revealed a further change in homozygosity at amino acid position 56 (p.R56G), located in a highly conserved region. Both patients developed gallstones; however the father, who had undergone surgery for the removal of stones, had extremely severe intrahepatic cholestasis and, liver biopsy revealed fibrosis and siderosis grade III, leading us to believe that the homozygosity of the UGT1A polymorphism was responsible for the more severe clinical features in the father. Moreover, our results show how the clinical expression of hemolytic anemia is influenced by epistatic factors and we describe a new mutation in the P5'N gene associated with enzyme deficiency, iron overload, and severe gallstone formation. To our knowledge, this is the first description of P5'N deficiency in South Americans.
Resumo:
A new enantioselective Heck-Matsuda desymmetrization reaction was accomplished by using 3-cyclopentenol to produce chiral five-membered 4-aryl cyclopentenol scaffolds in good yields and high ee's, together with some 3-aryl-cyclopentanones as minor products. Mechanistically, the hydroxyl group of 3-cyclopentenol acts as a directing group and is responsible for the cis- arrangement in the formation of the 4-aryl-cyclopentenols.
Resumo:
Obesity is currently considered a major public health problem in the world, already reaching epidemic characteristics, according to the World Health Organization. Excess weight is the major risk factor associated with various diseases, such as type 2 diabetes mellitus, hypertension, dyslipidemia and osteometabolic diseases, including osteoporosis and osteoarthritis. Osteoarthritis is the most prevalent rheumatic disease and the leading cause of physical disability and reduced quality of life of the population over 65 years. It mainly involves the joints that bear weight - knees and hips. However, along with the cases of obesity, its prevalence is increasing, and even in other joints, such as hands. Thus, it is assumed that the influence of obesity on the development of OA is beyond mechanical overload. The purpose of this review was to correlate the possible mechanisms underlying the genesis and development of these two diseases. Increased fat mass is directly proportional to excessive consumption of saturated fatty acids, responsible for systemic low-grade inflammation condition and insulin and leptin resistance. At high levels, leptin assumes inflammatory characteristics and acts in the articular cartilage, triggering the inflammatory process and changing homeostasis this tissue with consequent degeneration. We conclude that obesity is a risk factor for osteoarthritis and that physical activity and changes in diet composition can reverse the inflammatory and leptin resistance, reducing progression or preventing the onset of osteoarthritis.
Resumo:
The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.
Resumo:
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.
Resumo:
To describe the clinical history of a child with aggressive behavior and recurring death-theme speech, and report the experience of the team of authors, who proposed an alternative to medication through the establishment of a protection network and the inter-sector implementation of the circle of security concept. A 5-year-old child has a violent and aggressive behavior at the day-care. The child was diagnosed by the healthcare center with depressive disorder and behavioral disorder, and was medicated with sertraline and risperidone. Side effects were observed, and the medications were discontinued. Despite several actions, such as talks, teamwork, psychological and psychiatric follow-up, the child's behavior remained unchanged. A unique therapeutic project was developed by Universidade Estadual de Campinas' Medical School students in order to establish a connection between the entities responsible for the child's care (daycare center, healthcare center, and family). Thus, the team was able to develop a basic care protection network. The implementation of the inter-sector circle of security, as well as the communication and cooperation among the teams, produced very favorable results in this case. This initiative was shown to be a feasible and effective alternative to the use of medication for this child.
Resumo:
Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.
Resumo:
Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region.