936 resultados para resistant restorations
Resumo:
In experimental rabbit meningitis, cefepime given at a dose of 100 mg/kg was associated with concentrations in the cerebrospinal fluid of between 5.3 and 10 mg/L and a bactericidal activity of -0.61 +/- 0.24 Delta log(10) cfu/mL x h, similar to the standard regimen of ceftriaxone combined with vancomycin (-0.58 +/- 0.14 Delta log(10) cfu/mL x h) in the treatment of meningitis due to a penicillin- and quinolone-resistant pneumococcal mutant strain (MIC 4 mg/L). Compared with the penicillin-resistant parental strain, the penicillin- and quinolone-resistant mutant was killed more slowly by cefepime and ceftriaxone in time-killing assays in vitro over 8 h.
Resumo:
In experimental meningitis a single dose of gentamicin (10 mg/kg of body weight) led to gentamicin levels in around cerebrospinal fluid (CSF) of 4 mg/liter for 4 h, decreasing slowly to 2 mg/liter 4 h later. The CSF penetration of gentamicin ranged around 27%, calculated by comparison of areas under the curve (AUC in serum/AUC in CSF). Gentamicin monotherapy (-1.24 log(10) CFU/ml) was inferior to vancomycin monotherapy (-2.54 log(10) CFU/ml) over 8 h against penicillin-resistant pneumococci. However, the combination of vancomycin with gentamicin was significantly superior (-4.48 log(10) CFU/ml) compared to either monotherapy alone. The synergistic activity of vancomycin combined with gentamicin was also demonstrated in vitro in time-kill assays.
Resumo:
BMS 284756 penetrated well into inflamed meninges (44% +/- 11%) and produced good bactericidal activity (-0.82 +/- 0.22 Delta log(10) CFU/ml. h) in the treatment of experimental meningitis in rabbits due to a penicillin-sensitive strain. BMS 284756 monotherapy had a greater potency than the standard regimen of ceftriaxone and vancomycin (-0.49 +/- 0.08 Delta log(10) CFU/ml. h) against a penicillin-resistant strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, BMS 284756 showed good bactericidal activity (-0.52 +/- 0.12 Delta log(10) CFU/ml. h). The antibacterial activity of BMS 284756 was confirmed by time-killing assays over 8 h in vitro.
Resumo:
BACKGROUND: The continuous spread of penicillin-resistant pneumococci represents a permanent threat in the treatment of pneumococcal infections, especially when strains show additional resistance to quinolones. The main objective of this study was to determine a treatment modality impeding the emergence of quinolone resistance. RESULTS: Exposure of a penicillin-resistant pneumococcus to increasing concentrations of trovafloxacin or ciprofloxacin selected for mutants resistant to these drugs. In the presence of sub-inhibitory concentrations of vancomycin, development of trovafloxacin-resistance and high-level ciprofloxacin-resistance were prevented. CONCLUSIONS: Considering the risk of quinolone-resistance in pneumococci, the observation might be of clinical importance.
Resumo:
Gatifloxacin penetrated well into cerebrospinal fluid (CSF) (49 +/- 11%), measured by comparison of AUC(CSF)/AUC(serum), and showed good bactericidal activity (leading to a decrease of 0.75 +/- 0.17 log10 cfu/mL/h) in the treatment of experimental meningitis in rabbits caused by a penicillin-resistant pneumococcal strain (MIC 4 mg/L). It was significantly more effective than the standard regimen, ceftriaxone with vancomycin, which led to a decrease of 0.53 +/- 0.17 log10 cfu/mL/h. The addition of cefepime to gatifloxacin slightly improved the killing rates (giving a decrease of 0.84 +/- 0.14 log10 cfu/mL/h). In vitro, synergy was demonstrated between cefepime and gatifloxacin by the chequerboard method (fractional inhibitory concentration index = 0.5) and by viable counts over 8 h.
Resumo:
In the past 10 to 20 years the pneumococcus, the most common pathogen of community-acquired pneumonia, has developed resistance to most antibiotics used for its treatment. Classes with important resistance problems include the beta-lactams, the macrolides and lincosamides, trimethoprim-sulfamethoxazole, and the tetracyclines. Unfortunately, resistance to more than one class of antibiotics is common in pneumococci, and their treatment is thus becoming more difficult. Patients likely to harbour resistant organisms include young children, particularly those attending day care, older patients, and subjects who have received recent antibiotic therapy, suffer from underlying diseases including HIV, or have nosocomial or polymicrobial pneumonia. The consequences of resistance development are different for different classes of antibiotics. With beta-lactams, the increase in minimal inhibitory concentrations is usually moderate in resistant strains, and because of the high concentrations that can be achieved with this class of drugs resistance does not usually lead to treatment failure. Thus, beta-lactams continue to be important drugs for the treatment of pneumococcal pneumonia, even if the organism is resistant. In contrast, resistance to other classes of antibiotics must be assumed to render these drugs ineffective. Newer quinolones represent valuable alternatives for the treatment of pneumococcal pneumonia, since their efficacy is not affected by resistance to other classes of antibiotics and they cover almost all pathogens of community-acquired pneumonia, including the atypical pathogens. However, they should be used with restraint in order to preserve this valuable class of drugs.
Resumo:
Linezolid, a new oxazolidinone antibiotic, showed good penetration (38+/-4%) into the meninges of rabbits with levels in the CSF ranging from 9.5 to 1.8 mg/L after two i.v. injections (20 mg/kg). Linezolid was clearly less effective than ceftriaxone against a penicillin-sensitive pneumococcal strain. Against a penicillin-resistant strain, linezolid had slightly inferior killing rates compared with the standard regimen (ceftriaxone combined with vancomycin). In vitro, linezolid was marginally bactericidal at concentrations above the MIC (5 x and 10 x MIC).
Resumo:
Grepafloxacin, a new fluoroquinolone, produced bactericidal activity comparable to that of vancomycin and ceftriaxone in the treatment in rabbits of meningitis caused by a pneumococcal strain highly resistant to penicillin (MIC 4 mg/L) (triangle uplog(10) cfu/mL*h for grepafloxacin, -0.32 +/- 0.15; dose, 15 mg/kg iv; triangle uplog(10) cfu/mL*h for vancomycin, -0.39 +/- 0.18; dose, 2 x 20 mg/kg iv; triangle uplog(10) cfu/mL*h for ceftriaxone, -0.32 +/- 0. 12; dose, 125 mg/kg iv). Higher doses of grepafloxacin (30 mg/kg and 2 x 50 mg/kg) did not improve the killing rates. The combination of grepafloxacin with vancomycin was not significantly superior to monotherapies (P > 0.05). In vitro, grepafloxacin was bactericidal at concentrations above the MIC. Using concentrations around the MIC, addition of vancomycin to grepafloxacin showed synergic activity.
Resumo:
The bactericidal activities of monotherapy with trovafloxacin (-0.37 +/- 0.15 Delta log(10) CFU/ml. h), vancomycin (-0.32 +/- 0.12 Delta log(10) CFU/ml. h), and ceftriaxone (-0.36 +/- 0.19 Delta log(10) CFU/ml. h) for the treatment of experimental meningitis in rabbits due to a clinical penicillin-resistant pneumococcal strain (MIC, 4 mg/liter) were similar. The combination of ceftriaxone with trovafloxacin considerably improved the killing rates (-0.67 +/- 0.16 Delta log(10) CFU/ml. h) and was slightly superior to ceftriaxone with vancomycin (killing rate, -0.53 +/- 0. 22 Delta log(10) CFU/ml. h), the regimen most commonly used in clinical practice. In vitro, synergy was demonstrated between ceftriaxone and trovafloxacin by the checkerboard method (fractional inhibitory concentration index, 0.5) and by time-killing assays over 8 h.
Resumo:
In a rabbit model of meningitis caused by a pneumococcus highly resistant to penicillin (MIC, 4 microg/ml), meropenem, a broad-spectrum carbapenem, was bactericidal (-0.48+/-0.14 deltalog10 cfu/ml h) and slightly superior to ceftriaxone (-0.34+/-0.23 deltalog10 cfu/ml x h) and vancomycin (-0.39+/-0.19 deltalog10 cfu/ml x h). Although the combination of vancomycin with ceftriaxone was significantly more active than ceftriaxone alone (-0.55+/-0.19 deltalog10 cfu/ml x h), only an insignificant gain was observed by the addition of vancomycin to meropenem (-0.55+/-0.28 deltalog10 cfu/ml x h).
Resumo:
Cefepime, a broad-spectrum, fourth-generation cephalosporin, showed excellent CSF penetration with levels ranging between 10 and 16 mg/L after two intravenous injections (100 mg/kg). The bactericidal activity of cefepime (-0.60 +/- 0.28 Deltalog(10) cfu/mL/h) was superior to that of ceftriaxone (-0.34 +/- 0.23 Deltalog(10) cfu/mL/h, P < 0.05) and vancomycin (-0.39 +/- 0.19 Deltalog(10) cfu/mL/h, P < 0.05) in the treatment of rabbits with meningitis caused by an isolate highly resistant to penicillin (MIC of penicillin G: 4 mg/L). The addition of vancomycin to both cephalosporins did not significantly increase the killing rate compared with monotherapies (P > 0.05). Similar results were obtained in time-killing experiments in vitro.
Resumo:
Trovafloxacin, a new fluoroquinolone, produced bactericidal activity (-0.33 +/- 0.13 delta log10 CFU/ml.h; intravenously [i.v.] administered dose, 15 mg/kg) comparable to that of vancomycin (-0.39 +/- 0.18 delta log10 CFU/ml.h; i.v. admininistered dose, 20 mg/kg) in the treatment of experimental meningitis in rabbits due to a pneumococcal strain highly resistant to penicillin (MIC of penicillin G, 4 micrograms/ml). The combination of both drugs significantly increased (P < 0.05) the killing rate (-0.60 +/- 0.23 delta log10 CFU/ml.h) compared to that produced by either monotherapy. These results were also confirmed in vitro.
Resumo:
The new fluoroquinolone trovafloxacin was tested against a ciprofloxacin-sensitive, methicillin-resistant Staphylococcus aureus strain in the rabbit model of endocarditis. Trovafloxacin was more effective than vancomycin (CFU/g of vegetation, 2.65 +/- 1.87 versus 4.54 +/- 2.80 [mean +/- standard deviation]; P < 0.05) or ampicillin-sulbactam plus rifampin (4.9 +/- 1.1 CFU/g). The addition of ampicillin-sulbactam to trovafloxacin tended to reduce titers further.
Resumo:
The fluoroquinolone trovafloxacin was bactericidal (0.47 +/- 0.23 delta log10 CFU/ml x h after 10 mg/kg of body weight and 0.78 +/- 0.15 delta log10 CFU/ml x h after 30 mg/kg) in the treatment of experimental meningitis caused by a highly penicillin-resistant (MIC and minimum bactericidal concentration = 4 and 4 microg/ml) strain of Streptococcus pneumoniae. Combinations with ampicillin and rifampin were indifferent compared to single drugs.
Resumo:
The therapeutic efficacy of pefloxacin in experimental endocarditis caused by methicillin-susceptible or methicillin-resistant Staphylococcus aureus was evaluated. In rabbits infected with a methicillin-susceptible strain, 4 days of pefloxacin therapy significantly reduced both the number of bacteria per gram of vegetation and the mortality rate compared with untreated controls, and pefloxacin was equivalent to cephalothin. Pefloxacin was also as effective as vancomycin in reducing vegetation titers and mortality rate in animals with endocarditis caused by a methicillin-resistant strain. These results suggest that pefloxacin may be an effective agent in the therapy of serious infections caused by either methicillin-susceptible or -resistant strains of S. aureus.