988 resultados para recognition interaction
Resumo:
In this paper we study the interaction between ownership structure and customer satisfaction, and their impact on a firm's brand equity. We find that customer satisfaction has a positive direct effect on brand equity but an indirect negative one, through reductions in ownership concentration. This latter effect emerges when managers are focused mainly on satisfying customers. It gives out a warning signal that highlights the perverse effect of implementing policies focused excessively on satisfying customers at the expense of shareholders, on a firm's brand equity. We demonstrate our theoretical contention, empirically, making use of an incomplete panel data comprising 69 firms from 11 different nations for the period 2002-2005.
Resumo:
Efficient initiation by the DNA polymerase of adenovirus type 2 requires nuclear factor I (NFI), a cellular sequence-specific transcription factor. Three functions of NFI--dimerization, DNA binding, and activation of DNA replication--are colocalized within the N-terminal portion of the protein. To define more precisely the role of NFI in viral DNA replication, a series of site-directed mutations within the N-terminal domain have been generated, thus allowing the separation of all three functions contained within this region. Impairment of the dimerization function prevents sequence-specific DNA binding and in turn abolishes the NFI-mediated activation of DNA replication. NFI DNA-binding activity, although necessary, is not sufficient to activate the initiation of adenovirus replication. A distinct class of NFI mutations that abolish the recruitment of the viral DNA polymerase to the origin also prevent the activation of replication. Thus, a direct interaction of NFI with the viral DNA polymerase complex is required to form a stable and active preinitiation complex on the origin and is responsible for the activation of replication by NFI.
Resumo:
OBJECTIVE To assess the digital educational technology interface Caring for the sensory environment in the neonatal unit: noise, lighting and handling based on ergonomic criteria. METHODS Descriptive study, in which we used the guidelines and ergonomic criteria established by ISO 9241-11 and an online Likert scale instrument to identify problems and interface qualities. The instrument was built based on Ergolist, which follows the criteria of ISO 9141-11. There were 58 undergraduate study participants from the School of Nursing of Ribeirao Preto, University of Sao Paulo, who attended the classes about neonatal nursing content. RESULTS All items were positively evaluated by more than 70% of the sample. CONCLUSION Educational technology is appropriate according to the ergonomic criteria and can be made available for teaching nursing students.
Resumo:
OBJECTIVE To investigate the concept understood by Family Healthcare Strategy (ESF) professionals of knowledge, education and subjects participating in learning activities. METHOD Qualitative study carried out with the ESF professionals with university degree, members of the healthcare staff who undertook educational health group activities at Basic Healthcare Units (UBS) in Belo Horizonte. The following triangulation techniques were used: participant observation, photos and field notes; interviews with professionals; and document analysis. RESULTS We identified three interaction patterns that are different from each other. Firstly, the professional questions, listens and provides information to users, trusting in the transmission of knowledge; secondly, the professional questions and listens, trusting that users can learn from each other; thirdly, the professional questions, listens, discusses and produces knowledge with users, both teaching and learning from each other. CONCLUSION There are educational practices that include unique methods capable of creating a militant space for citizenship engagement.
Resumo:
IL-2 is crucial to T cell homeostasis, especially of CD4(+) T regulatory cells and memory CD8(+) cells, as evidenced by vigorous proliferation of these cells in vivo following injections of superagonist IL-2/anti-IL-2 antibody complexes. The mechanism of IL-2/anti-IL-2 antibody complexes is unknown owing to a lack of understanding of IL-2 homeostasis. We show that IL-2 receptor alpha (CD25) plays a crucial role in IL-2 homeostasis. Thus, prolongation of IL-2 half-life and blocking of CD25 using antibodies or CD25-deficient mice led in combination, but not alone, to vigorous IL-2-mediated T cell proliferation, similar to IL-2/anti-IL-2 antibody complexes. These data suggest an unpredicted role for CD25 in IL-2 homeostasis.
Resumo:
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.
Resumo:
The coreid Leptoglossus zonatus (Dallas, 1852) is commonly found in corn (Zea mays L.) fields in Brazil, and it has been observed flying and landing on objects or persons near these fields. During January, 1995, this behavior was studied in corn plantations. Results indicated that the bugs concentrated on objects (plastic cylinders traps) introduced into their habitat and that their number increased during the first 24 hs. However, as time passed (8 days), this possible territorial or recognition behavior gradually decreased, and tended to disappear.
Resumo:
The activation of the specific immune response against tumor cells is based on the recognition by the CD8+ Cytotoxic Τ Lymphocytes (CTL), of antigenic peptides (p) presented at the surface of the cell by the class I major histocompatibility complex (MHC). The ability of the so-called T-Cell Receptors (TCR) to discriminate between self and non-self peptides constitutes the most important specific control mechanism against infected cells. The TCR/pMHC interaction has been the subject of much attention in cancer therapy since the design of the adoptive transfer approach, in which Τ lymphocytes presenting an interesting response against tumor cells are extracted from the patient, expanded in vitro, and reinfused after immunodepletion, possibly leading to cancer regression. In the last decade, major progress has been achieved by the introduction of engineered lypmhocytes. In the meantime, the understanding of the molecular aspects of the TCRpMHC interaction has become essential to guide in vitro and in vivo studies. In 1996, the determination of the first structure of a TCRpMHC complex by X-ray crystallography revealed the molecular basis of the interaction. Since then, molecular modeling techniques have taken advantage of crystal structures to study the conformational space of the complex, and understand the specificity of the recognition of the pMHC by the TCR. In the meantime, experimental techniques used to determine the sequences of TCR that bind to a pMHC complex have been used intensively, leading to the collection of large repertoires of TCR sequences that are specific for a given pMHC. There is a growing need for computational approaches capable of predicting the molecular interactions that occur upon TCR/pMHC binding without relying on the time consuming resolution of a crystal structure. This work presents new approaches to analyze the molecular principles that govern the recognition of the pMHC by the TCR and the subsequent activation of the T-cell. We first introduce TCRep 3D, a new method to model and study the structural properties of TCR repertoires, based on homology and ab initio modeling. We discuss the methodology in details, and demonstrate that it outperforms state of the art modeling methods in predicting relevant TCR conformations. Two successful applications of TCRep 3D that supported experimental studies on TCR repertoires are presented. Second, we present a rigid body study of TCRpMHC complexes that gives a fair insight on the TCR approach towards pMHC. We show that the binding mode of the TCR is correctly described by long-distance interactions. Finally, the last section is dedicated to a detailed analysis of an experimental hydrogen exchange study, which suggests that some regions of the constant domain of the TCR are subject to conformational changes upon binding to the pMHC. We propose a hypothesis of the structural signaling of TCR molecules leading to the activation of the T-cell. It is based on the analysis of correlated motions in the TCRpMHC structure. - L'activation de la réponse immunitaire spécifique dirigée contre les cellules tumorales est basée sur la reconnaissance par les Lymphocytes Τ Cytotoxiques (CTL), d'un peptide antigénique (p) présenté à la suface de la cellule par le complexe majeur d'histocompatibilité de classe I (MHC). La capacité des récepteurs des lymphocytes (TCR) à distinguer les peptides endogènes des peptides étrangers constitue le mécanisme de contrôle le plus important dirigé contre les cellules infectées. L'interaction entre le TCR et le pMHC est le sujet de beaucoup d'attention dans la thérapie du cancer, depuis la conception de la méthode de transfer adoptif: les lymphocytes capables d'une réponse importante contre les cellules tumorales sont extraits du patient, amplifiés in vitro, et réintroduits après immunosuppression. Il peut en résulter une régression du cancer. Ces dix dernières années, d'importants progrès ont été réalisés grâce à l'introduction de lymphocytes modifiés par génie génétique. En parallèle, la compréhension du TCRpMHC au niveau moléculaire est donc devenue essentielle pour soutenir les études in vitro et in vivo. En 1996, l'obtention de la première structure du complexe TCRpMHC à l'aide de la cristallographie par rayons X a révélé les bases moléculaires de l'interaction. Depuis lors, les techniques de modélisation moléculaire ont exploité les structures expérimentales pour comprendre la spécificité de la reconnaissance du pMHC par le TCR. Dans le même temps, de nouvelles techniques expérimentales permettant de déterminer la séquence de TCR spécifiques envers un pMHC donné, ont été largement exploitées. Ainsi, d'importants répertoires de TCR sont devenus disponibles, et il est plus que jamais nécessaire de développer des approches informatiques capables de prédire les interactions moléculaires qui ont lieu lors de la liaison du TCR au pMHC, et ce sans dépendre systématiquement de la résolution d'une structure cristalline. Ce mémoire présente une nouvelle approche pour analyser les principes moléculaires régissant la reconnaissance du pMHC par le TCR, et l'activation du lymphocyte qui en résulte. Dans un premier temps, nous présentons TCRep 3D, une nouvelle méthode basée sur les modélisations par homologie et ab initio, pour l'étude de propriétés structurales des répertoires de TCR. Le procédé est discuté en détails et comparé à des approches standard. Nous démontrons ainsi que TCRep 3D est le plus performant pour prédire des conformations pertinentes du TCR. Deux applications à des études expérimentales des répertoires TCR sont ensuite présentées. Dans la seconde partie de ce travail nous présentons une étude de complexes TCRpMHC qui donne un aperçu intéressant du mécanisme d'approche du pMHC par le TCR. Finalement, la dernière section se concentre sur l'analyse détaillée d'une étude expérimentale basée sur les échanges deuterium/hydrogène, dont les résultats révèlent que certaines régions clés du domaine constant du TCR sont sujettes à un changement conformationnel lors de la liaison au pMHC. Nous proposons une hypothèse pour la signalisation structurelle des TCR, menant à l'activation du lymphocyte. Celle-ci est basée sur l'analyse des mouvements corrélés observés dans la structure du TCRpMHC.
Resumo:
Clustering of alphavbeta3 integrin after interaction with the RGD-like integrin-binding sequence present in neuronal Thy-1 triggers formation of focal adhesions and stress fibers in astrocytes via RhoA activation. A putative heparin-binding domain is present in Thy-1, raising the possibility that this membrane protein stimulates astrocyte adhesion via engagement of an integrin and the proteoglycan syndecan-4. Indeed, heparin, heparitinase treatment and mutation of the Thy-1 heparin-binding site each inhibited Thy-1-induced RhoA activation, as well as formation of focal adhesions and stress fibers in DI TNC(1) astrocytes. These responses required both syndecan-4 binding and signaling, as evidenced by silencing syndecan-4 expression and by overexpressing a syndecan-4 mutant lacking the intracellular domain, respectively. Furthermore, lack of RhoA activation and astrocyte responses in the presence of a PKC inhibitor or a dominant-negative form of PKCalpha implicated PKCalpha and RhoA activation in these events. Therefore, combined interaction of the astrocyte alphavbeta3-integrin-syndecan-4 receptor pair with Thy-1, promotes adhesion to the underlying matrix via PKCalpha- and RhoA-dependent pathways. Importantly, signaling events triggered by such receptor cooperation are shown here to be the consequence of cell-cell rather than cell-matrix interactions. These observations are likely to be of widespread biological relevance because Thy-1-integrin binding is reportedly relevant to melanoma invasion, monocyte transmigration through endothelial cells and host defense mechanisms.
Resumo:
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis.
Resumo:
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of immunity against pathogens. However, HIV-1 spread is strongly enhanced in clusters of DCs and CD4(+) T cells. Uninfected DCs capture HIV-1 and mediate viral transfer to bystander CD4(+) T cells through a process termed trans-infection. Initial studies identified the C-type lectin DC-SIGN as the HIV-1 binding factor on DCs, which interacts with the viral envelope glycoproteins. Upon DC maturation, however, DC-SIGN is down-regulated, while HIV-1 capture and trans-infection is strongly enhanced via a glycoprotein-independent capture pathway that recognizes sialyllactose-containing membrane gangliosides. Here we show that the sialic acid-binding Ig-like lectin 1 (Siglec-1, CD169), which is highly expressed on mature DCs, specifically binds HIV-1 and vesicles carrying sialyllactose. Furthermore, Siglec-1 is essential for trans-infection by mature DCs. These findings identify Siglec-1 as a key factor for HIV-1 spread via infectious DC/T-cell synapses, highlighting a novel mechanism that mediates HIV-1 dissemination in activated tissues.