964 resultados para reatividade cardiovascular
Resumo:
The experimental results for the 2-propanolysis of benzoyl, benzyl, benzene sulphenyl and benzene sulphonyl chlorides obtained by conductimetric technique were compared with estimates for chlorobenzene which is extremely unreactive as an electrophile. We thus obtained the following reactivity sequence: PhSCl>PhCOCl>PhSO2Cl>PhCH2 Cl>PhCl with rate-coefficiente ratios (in the same order): 9.5 x 10(4) : 1: 7.14 x 10-2 : 4.7 x 10-3 : about 10-26. We have discussed these results in specific terms and with the aid of general conclusions which stem from our own classification of electrophiles.
Resumo:
In the last two decades, the use of oxygenated fuels, like methanol and ethanol, pure or in mixture with gasoline, has been growing due to benefits introduced into the air quality. In Brasil, the fraction of light duty vehicles powered by pure hydrated ethanol is estimated at about 4 million, while the remaining vehicles actually utilize a mixture (22:78 v/v) of ethanol:gasoline. As a consequence, there's a need for the availability of methods that can provide the evaluation of possible impacts of alcohol emissions in the formation of chemical species in the atmosphere, as ozone, aldehydes, carboxylic acids and so on. In this paper, methanol and ethanol are discussed in their general aspects, as well as their atmospheric sources, chemical reactivity and available methods of analysis.
Resumo:
The results of semiempirical molecular orbital calculations performed on aziridinone and diaziridinone employing the MNDO, AM1, and PM3 molecular models are presented. The AM1 method, which best reproduces ground-state molecular properties, is used to calculate electronic parameters and the use of these parameters for the evaluation of reactivity is discussed.
Resumo:
An overview of the experimental procedures to prepare lamellar samples of silica, as well as the reactivity and possible applications of this kind of material is presented. Special attention is focused on the obtained materials by using neutral dialkylamine route through sol-gel process.
Resumo:
The chemical reactivity of safrole, eugenol, piperonal, vanillin and derivates toward ozone, aluminium chloride, brominating agents and butyl lithium was investigated. The synthesis of naturally occuring anthraquinones, furonaphthoquinones, naphthoquinones, lignans and pterocarpans from these easily available staring materials is also discussed.
Resumo:
Neuropeptide Y (NPY) is an abundant neurotransmitter in the brain and sympathetic nervous system (SNS). Hypothalamic NPY is known to be a key player in food intake and energy expenditure. NPY’s role in cardiovascular regulation has also been shown. In humans, a Leucine 7 to Proline 7 single nucleotide polymorphism (p.L7P) in the signal peptide of the NPY gene has been associated with traits of metabolic syndrome. The p.L7P subjects also show increased stress-related release of NPY, which suggests that more NPY is produced and released from SNS. The main objective of this study was to create a novel mouse model with noradrenergic cell-targeted overexpression of NPY, and to characterize the metabolic and vascular phenotype of this model. The mouse model was named OE-NPYDBH mouse. Overexpression of NPY in SNS and brain noradrenergic neurons led to increased adiposity without significant weight gain or increased food intake. The mice showed lipid accumulation in the liver at young age, which together with adiposity led to impaired glucose tolerance and hyperinsulinemia with age. The mice displayed stress-related increased mean arterial blood pressure, increased plasma levels of catecholamines and enhanced SNS activity measured by GDP binding activity to brown adipose tissue mitochondria. Sexual dimorphism in NPY secretion pattern in response to stress was also seen. In an experimental model of vascular injury, the OE-NPYDBH mice developed more pronounced neointima formation compared with wildtype controls. These results together with the clinical data indicate that NPY in noradrenergic cells plays an important role in the pathogenesis of metabolic syndrome and related diseases. Furthermore, new insights on the role of the extrahypothalamic NPY in the process have been obtained. The OE-NPYDBH model provides an important tool for further stress and metabolic syndrome-related studies.
Resumo:
The fundaments of the modern Density Functional Theory (DFT), its basic theorems, principles and methodology are presented. This review also discuss important and widely used concepts in chemistry but that had not been precisely defined until the development of the DFT. These concepts were proposed and used from an empirical base, but now their precise definition are well established in the DFT formalism. Concepts such as chemical potential (electronegativity), hardness, softness and Fukui function are presented and their consequences to the understanding of chemical reactivity are discussed.
Resumo:
In the last three decades carbonyl compounds, aldehydes and ketones, have received a great deal of attention due to their strong influence on photochemical smog formation and their recognized adverse human health effects. Carbonyl compounds are directly emitted into the atmosphere by combustion sources and also produced from photochemical oxidation of hydrocarbons and other organic compounds. In this paper it is presented a general overview about the carbonyl compounds sources, reactivity, concentration levels and toxicological effects.
Resumo:
Synthetic methods used for the preparation of azaindoles are described in this article. Applications in the preparation of bioactive molecules are given: synthesis of substituted 6-azaindoles as benzodiazepines receptor ligands, substituted 7-azaindoles as dopamine D4 ligands and preparation of an olivacine analogue.
Resumo:
Abstract. Excessive alcohol consumption is associated with increased morbidity and mortality as well as with labour and traffic accidents. However, current evidence suggests beneficial effects of moderate drinking on cardiovascular events including coronary heart disease, ischaemic stroke, peripheral arterial disease and congestive heart failure. The underlying mechanisms to explain these protective effects against coronary heart disease include an increase in high-density lipoprotein cholesterol and an increase in insulin sensitivity, and a decrease in platelet aggregation and circulating concentrations of fibrinogen. However, there are discrepancies regarding the specific effects of different types of beverages on the cardiovascular system, and also whether the possible protective effects of alcoholic beverages are due to their alcohol component (ethanol) or non-alcoholic products containing, mainly polyphenols. Recent randomised clinical trials have shown that wine, a polyphenol-rich alcoholic beverage, provides higher antioxidant and anti-inflammatory effects than some spirits such as gin, a polyphenol-free alcoholic beverage. In addition, dealcoholized red wine decreases blood pressure through a nitric oxide mediated mechanism, suggesting a protective effect of polyphenols on vascular function. Other studies performed in women have observed that daily doses of 1520 g of alcohol as red wine are sufficient to elicit protective effects similar to those observed in men who consumed higher doses of wine. In conclusion, moderate consumption of wine exerts a protective effect on biomarkers related to the progression and development of atherosclerosis due to its alcoholic (ethanol) and non-alcoholic (polyphenols) content. Women are more sensitive to the beneficial effects of wine.
Resumo:
Caveolae are membrane micro-domains enriched in cholesterol, sphingolipids and caveolins, which are transmembrane proteins with a hairpin-like structure. Caveolae participate in receptor-mediated trafficking of cell surface receptors and receptor-mediated signaling. Furthermore, caveolae participate in clathrin-independent endocytosis of membrane receptors. On the one hand, caveolins are involved in vascular and cardiac dysfunction. Also, neurological abnormalities in caveolin-1 knockout mice and a link between caveolin-1 gene haplotypes and neurodegenerative diseases have been reported. The aim of this article is to present the rationale for considering caveolae as potential targets in cardiovascular and neurological diseases.