826 resultados para physical self-concept
Resumo:
The operating range of an axial compressor is often restricted by a safety imposed stall margin. One possible way of regaining operating range is with the application of casing treatment. Of particular interest here is the type of casing treatment which extracts air from a high pressure location in the compressor and re-injects it through discrete loops into the rotor tip region. Existing re-circulation systems have the disadvantage of reducing compressor efficiency at design conditions because worked flow is unnecessarily re-circulated at these operating conditions. Re-circulation is really only needed near stall. This paper proposes a self-regulating casing treatment in which the re-circulated flow is minimized at compressor design conditions and maximized near stall. The self-regulating capability is achieved by taking advantage of changes which occur in the tip clearance velocity and pressure fields as the compressor is throttled toward stall. In the proof-of-concept work reported here, flow is extracted from the high pressure region over the rotor tips and re-injected just upstream of the same blade row. Parametric studies are reported in which the flow extraction and re-injection ports are optimized for location, shape and orientation. The optimized design is shown to compare favorably with a circumferential groove tested in the same compressor. The relationship between stall inception type and casing treatment effectiveness is also investigated. The self-regulating aspect of the new design works well: stall margin improvements from 2.2 to 6.0% are achieved for just 0.25% total air re-circulated near stall and half that near design conditions. The self-regulating capability is achieved by the selective location and orientation of the extraction hole; a simple model is discussed which predicts the optimum axial location. Copyright © 2011 by ASME.
Resumo:
The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.
Resumo:
The adaptation of robots to changing tasks has been explored in modular self-reconfigurable robot research, where the robot structure is altered by adapting the connectivity of its constituent modules. As these modules are generally complex and large, an upper bound is imposed on the resolution of the built structures. Inspired by growth of plants or animals, robotic body extension (RBE) based on hot melt adhesives allows a robot to additively fabricate and assemble tools, and integrate them into its own body. This enables the robot to achieve tasks which it could not achieve otherwise. The RBE tools are constructed from hot melt adhesives and therefore generally small and only passive. In this paper, we seek to show physical extension of a robotic system in the order of magnitude of the robot, with actuation of integrated body parts, while maintaining the ability of RBE to construct parts with high resolution. Therefore, we present an enhancement of RBE based on hot melt adhesives with modular units, combining the flexibility of RBE with the advantages of simple modular units. We explain the concept of this new approach and demonstrate with two simple unit types, one fully passive and the other containing a single motor, how the physical range of a robot arm can be extended and additional actuation can be added to the robot body. © 2012 IEEE.
Resumo:
The electronic structures in the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that (1) electronic energy levels decrease monotonically, and the energy difference between the energy levels increases as the GaAs quantum dot (QD) height increases; (2) strong state mixing is found between the different energy levels as the GaAs QD width changes; (3) the hole energy levels decrease more quickly than those of the electrons as the GaAs QD size increases; (4) in excited states, the hole energy levels are closer to each other than the electron ones; (5) the first heavy- and light-hole transition energies are very close. Our theoretical results agree well with the available experimental data. Our calculated results are useful for the application of the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices.
Resumo:
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
Resumo:
We study the essential roles of self and mutual inductances in superconducting charge qubits and propose a scheme to couple charge qubits by means of mutual inductance. We also show that the Hamiltonians can be exactly formulated in compact forms in the spin-1/2 representation for both single- and double-qubit structures.
Resumo:
An anomalous behavior of the current self-oscillation frequency is observed in the dynamic de voltage bands, emerging from each sawtoothlike branch of the current-voltage characteristic of a doped GaAs/A1As superlattice in the transition process from static to dynamic electric field domain formations. Varying the applied de voltage at a fixed temperature, we find that the frequency increases while the averaged current decreases. Inside each voltage band, the frequency has a strong voltage dependence in the temperature range where the averaged current changes with the applied de voltage. This dependence can be understood in terms of motion of the system along a limit cycle.
Resumo:
The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally. Such a barrier has been predicted by previous theories. From the deep-level transient spectroscopy (DLTS) measurements, we have obtained the electron and hole energy levels of quantum dots E-e(QD-->GaAs) = 0.13 eV and E-h(QD-->GaAs) = 0.09 eV relative to the bulk unstrained GaAs band edges E-c and E-v. DLTS measurements have also provided evidence to the existence of the capture barriers of quantum dots for electron E-eB = 0.30 eV and hole E-hB = 0.26 eV. The barriers can be explained by the apexes appearing in the interface between InAs and GaAs caused by strain. Combining the photoluminescence results, the band structures of InAs and GaAs have been determined.
Resumo:
We investigate the influence of a transverse magnetic field on the current-voltage characteristics of a doped GaAs/AlAs superlattice at 1.6 K. The current transport regimes-stable electric field domain formation and current selfoscillation-are observed with increasing transverse magnetic field up to 13 T. Magnetic-field-induced redistribution of electron momentum and energy is identified as the mechanism triggering the switching over of one process to another lending to a change in the dependence of the effective electron drift velocity on electric field. Simulation yields excellent agreement with observed results.
Resumo:
The electronic structure of an InAs self-assembled quantum dot in the presence of a perpendicular magnetic field is investigated theoretically. The effect of finite offset, valence-band mixing, and strain are taken into account. The hole levels show strong anticrossings. The large strain and strong magnetic field decrease the effect of mixing between heavy hole and light hole. The hole energy levels have in general a weaker field dependence compared with the corresponding uncoupled levels.
Resumo:
Small-size, high-density, and vertical-ordering Ge quantum dots are observed in strained Si/Ge short-period superlattices grown on Si(001) at low growth temperature by molecular-beam epitaxy. The photoluminescence (PL) peak position, the strong PL at room temperature, and the high exciton binding energy suggest an indirect-to-direct conversion of the Ge quantum dots. This conversion is in good agreement with the theoretical prediction. The characteristic of absorption directly indicates this conversion. The tunneling of carriers between these quantum dots is also observed. [S0163-1829(98)03515-2].
Resumo:
We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.
Resumo:
A novel miniature cylindrical combustor, whose chamber wall is made of porous material, has been designed and experimented for reducing heat loss and enhancing flame stability. The combustor has the function of reducing wall heat loss, extending residence time and avoiding radical chemical quenching with a self-thermal insulation concept in which heat loss reduction is obtained by the opposite flow directions between thermal energy transfer and mass flow. The methane/air mixture flames formed in the chamber are blue and tubular in shape. Between the flames and the porous wall, there is a thin unburned film that plays a significant role in reducing the flames' heat loss and keeping the flames stable. The porous wall temperature was 150-400 degrees C when the temperatures of the flames and exhaust gas were more than 1200 degrees C. When the equivalence ratio phi < 1.0, the methane conversion ratio was above 95%; the combustion efficiency was near 90%; and the overall sidewall heat loss was less than 15% in the 1.53 cm(3) chamber. Moreover, its combustion efficiency is stable in a wider combustion load (input power) range.
Resumo:
By using a transfer-matrix method on the basis of two-dimensional (2D) Bloch sums in accordance with a tight-binding scheme, a self-consistent calculation on the resonant tunneling in asymmetric double-barrier structures is presented, in which contributions to resonant tunneling from both three-dimensional (3D) electrons in the contacts and 2D electrons in the spacer or accumulation layers are considered simultaneously. The charge buildup effect on the current versus voltage (I-V) curves is evaluated systematically, showing quantitatively how it results in the I-V bistability and enhanced differences between I-V curves for positive and negative bias in an asymmetric double-barrier structure. Special attention is focused on the interaction between 3D-2D and 2D-2D resonant-tunneling processes, including the suppression of 2D-2D resonant tunneling by the charge buildup in the well accompanying the 3D-2D resonant tunneling. The effects of the emitter doping condition (doping concentration, spacer thickness) on the presence of two types of quasi-2D levels in the emitter accumulation layers, and on the formation of a potential bulge in the emitter region, are discussed in detail in relation to the tunneling process.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.