868 resultados para physical effect
Resumo:
A three-parameter correlated wave function for the helium ground state is used to study the scattering reaction e(+) + He --> He+ + Ps, where Ps stands for positronium atom. An exact analytical expression is constructed for the first Born scattering amplitude for Ps formation from helium. Based on this numerical results are presented for both differential and total cross-sections. It is demonstrated that the inner electronic correlation of the target atom plays a crucial role in explaining the discrepency between theory and experiment.
Resumo:
We comment on the recent results [Phys. Rev. B 70, 235314 (2004)] showing the dispersion relations of single-particle and collective excitations in quantum wires in the presence of the Rashba spin-orbit interaction (SOI). We claim that those calculations performed in the absence of SOI, and used as a strong reference to the interacting case, are unlikely to be correct. We show the correct omega-q plane of the system in the absence of Rashba SOI.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study the relationship between the enzymatic susceptibility and the size of the com and cassava starch granules was studied. The starch granules were separated by size and classified according to their average diameter in: a) larger than 16 mum; b) between 15 and 10 mum and c) smaller than 10 mum. The starch granules of various sizes were hydrolyzed by bacterial alpha-amylase and fungal amyloglucosidase. The results showed a relationship between the enzymatic susceptibility and the size of the starch granules; smaller size of the starch granules resulted in a higher percentage of hydrolysis. A basic difference in the mode of action of enzymes on small and large granules was observed. Enzymatic attack on the large granules was characterized by considerable surface corrosion, mainly at the radial axis. For small granules, the enzymatic action occurred on the surface of the granules and was characterized by an erosion with solubilization of the granules. Chemical and physical analysis of the starches suggested that hydrolysis should occur mainly at the amorphous areas of the granules.
Resumo:
We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study - day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects axe due to the nature of the subjects themselves. Further and better study, teaching and economical conditions axe more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.
Resumo:
We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors of the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive C-12(nu(mu),mu(-))X cross sections using a relativistic Fermi gas model with the calculated bound nucleon form factors. The effect of the bound nucleon form factors for this reaction is a reduction of similar to8% for the total cross section, relative to that calculated with the free nucleon form factors.
Resumo:
A system constituted of three bosons interacting via two-body separable potentials with fixed two-boson binding is known to lead to bound-state collapse in the case where the potential parameters allow two-boson S-matrix poles close to (resonance) and on (continuum bound state) the real momentum axis. The collapse is shown to be accompanied by an increase in the average kinetic energy of the two-body bound state, which signals a decrease in the range of the two-body interaction for fixed two-body binding. The collapse is claimed to be a manifestation of the well-known Thomas effect which leads to a collapse of the three-body system when the range of the two-body interaction goes to zero for a fixed two-body binding.
Resumo:
The ultrasound stimulated and oxalic acid-catalyzed hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method as a function of the initial water/TMOS molar ratio (r) ranging from 2 to 10. The method is based on the time recording of the hydrolysis exothermic heat peak. which takes place in acidulated heterogeneous water-TMOS mixtures under ultrasonic stimulation, accounting for the instantaneous hydrolysis rate. The hydrolysis rate increases from zero up to a maximum value during the heterogeneous step of the process and then diminishes naturally according to the reactant consumption. The total hydrolyzed quantity was found to be slightly increasing with r. The immiscibility gap of the TMOS- water system in the presence of the hydrolysis products has been inferred from the evaluation of the reacted quantity during the heterogeneous step of the reaction and it has been represented in a ternary diagram in the studied r-range.
Resumo:
Statement of problem. Although most of the physical properties of denture base resin polymerized by microwave energy have been shown to be similar to resins polymerized by the conventional heat polymerization method, the presence of porosity is a problem.Purpose. This study evaluated the effect of different microwave polymerization cycles on the porosity of a denture base resin designed for microwave polymerization.Material and methods. Thirty-two rectangular resin specimens (65 X 40 X 5 mm) were divided into 3 experimental groups (A, B, and C; Onda-Cryl, microwave-polymerized resin) and I control group (T; Classico, heat-polymerized resin), according to the following polymerization cycles: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes, and (T) 74degreesC for 9 hours. Porosity was calculated by measurement of the specimen volume before and after its immersion in water. Data were analyzed using 1-way analysis of variance (alpha = .05).Results. The mean values and SDs of the percent mean porosity were: A = 1.05% +/- 0.28%, B = 0.91% +/- 0.15%, C = 0.88% +/- 0.23%, T = 0.93% +/- 0.23%. No significant differences were found in mean porosity among the groups evaluated.Conclusion. Within the limitations of this study, a denture base resin specifically designed for microwave Polymerization tested was not affected by different polymerization cycles. Porosity was similar to the conventional heat-polymerized denture base resin tested.