915 resultados para nonlinear optical properties
Resumo:
Self-organized InGaAs QDs are intensively studied for optoelectronic applications. Several approaches are in study to reach the emission wavelengths needed for these applications. The use of antimony (Sb) in either the capping layer or into the dots is one example. However, these studies are normally focused on buried QD (BQD) where there are still different controversial theories concerning the role of Sb. Ones suggest that Sb incorporates into the dot [1], while others support the hypothesis that the Sb occupies positions surrounding the dot [2] thus helping to keep their shape during the capping growth.
Resumo:
• GaN NCs on Si • PA-MBE • Diameters 20 – 60 nm • Lengths 0.6 – 1.2 µm • Unstrained • PL lines correlate to NC coalescence, EXCEPT the 3.45 eV doublet
Resumo:
The cadmium thioindate spinel CdIn2S4 semiconductor has potential applications for optoelectronic devices. We present a theoretical study of the structural and optoelectronic properties of the host and of the Cr-doped ternary spinel. For the host spinel, we analyze the direct or indirect character of the energy bandgap, the change of the energy bandgap with the anion displacement parameter and with the site cation distribution, and the optical properties. The main effect of the Cr doping is the creation of an intermediate band within the energy bandgap. The character and the occupation of this band are analyzed for two substitutions: Cr by In and Cr by Cd. This band permits more channels for the photon absorption. The optical properties are obtained and analyzed. The absorption coefficients are decomposed into contributions from the different absorption channels and from the inter-and intra-atomic components.
Resumo:
The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures.
Resumo:
Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.
Resumo:
Time-resolved reflectance is proposed and effectively used for the nondestructive measurement of the optical properties in apples. The technique is based on the detection of the temporal dispersion of a short laser pulse injected into the probed medium. The time-distribution of re-emitted photons interpreted with a solution of the Diffusion equation yields the mean values of the absorption and reduced scattering coefficients of the medium. The proposed technique proved valuable for the measurement of the absorption and scattering spectra of different varieties of apples. No major variations were observed in the experimental data when the fruit was peeled, proving that the measured optical properties are referred to the pulp. The depth of probed volume was determined to be about 2 cm. Finally, the technique proved capable to follow the change in chlorophyll absorption during storage.
Resumo:
Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (i.e., latent tracks). In the case of amorphous silica it has been reported that SHI irradiation originates nano-tracks of either higher density than the virgin material (for low electronic stopping powers, Se < 7 keV/nm) [1] or having a low-density core and a dense shell (Se > 12 keV/nm) [2]. The intermediate region has not been studied in detail but we will show in this work that essentially no changes in density occur in this zone. An interesting effect of the compaction is that the refractive index is increased with respect to that of the surroundings. In the first Se region it is clear that track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate and this has been used to produce optical waveguides. The optical effects of intermediate and high stopping powers, on the other hand, are largely unknown so far. In this work we have studied theoretically (molecular dynamics and optical simulations) and experimentally (irradiation with SHI and optical characterization) the dependence of the macroscopic optical properties (i.e., the refractive index of the effective medium, n_EMA) on the electronic stopping power of the incoming ions. Our results show that the refractive index of the irradiated silica is not increased in the intermediate region, as expected; however, the core-shell tracks of the high-Se region produce a quite effective enhancement of n_EMA that could prove attractive for the fabrication of optical waveguides at ultralow fluences (as low as 1E11 cm^-2). 1. J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, "Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2)," Nucl. Instrum. Meth. B 268, 3147-3150 (2010). 2. P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, "Fine structure in swift heavy ion tracks in amorphous SiO2," Phys. Rev. Lett. 101, 175503 (2008).
Resumo:
A relevant issue concerning optoelectronic devices based on III-nitrides is the presence of strong polarization fields that may reduce efficiency.
Resumo:
The nonlinear optical properties of the interface between glass and liquid crystal are reported. Switching characteristics and optical hysterfisis have beam studied.
Resumo:
The nonlinear optical properties of many materials and devices have been the main object of research as potential candidates for sensing in different places. Just one of these properties has been, in most of the cases, the basis for the sensing operation. As a consequence, just one parameter can be detected. In this paper, although just one property will be employed too, we will show the possibility to sense different parameters with just one type of sensor. The way adopted in this work is the use of the optical bistability obtained from different photonic structures. Because this optical bistability has a strong dependence on many different parameters the possibility to sense different inputs appears. In our case, we will report the use of some non-linear optical devices, mainly Semiconductor Optical Amplifiers, as sensing elements. Because their outputs depend on many parameters, as the incident light wavelength, polarization, intensity and direction, applied voltage and feedback characteristics, they can be employed to detect, at the same time, different type of signals. This is because the way these different signals affect to the sensor response is very different too and appears under a different set of characteristics.
Resumo:
ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 °C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.
Resumo:
The substitution of cation atoms by V, Cr and It in the natural and synthetic quaternary Cu2ZnSnS4 semiconductor is analyzed using first-principles methods. In most of the substitutions, the electronic structure of these modified CZTS is characterized for intermediate bands with different occupation and position within of the energy band gap. A study of the symmetry and composition of these intermediate bands is carried out for all substitutions. These bands permit additional photon absorption and emission channels depending on their occupation. The optical properties are obtained and analyzed. The absorption coefficients are split into contributions from the different absorption channels and from the inter- and intra-atomic components. The sub bandgap transitions are significant in many cases because the anion states contribute to the valence, conduction and intermediates bands. These properties could therefore be used for novel optoelectronic devices.
Resumo:
This work presents a comprehensive optical characterization of Zn1−xMgxO thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The linewidth broadening of the absorption and emission spectra as well as the magnitude of the observed Stokes shift are found to significantly increase with the Mg content. This is shown to be related to both potential fluctuations induced by pure statistical alloy disorder and the presence of a tail of band states, the latter dominating for medium Mg contents. Finally, metal–semiconductor–metal photodiodes were fabricated showing a high sensitivity and a blue shift in the cut-off energy from 3.32 to 4.02 eV, i.e., down to 308 nm. The photodiodes present large UV/dark contrast ratios (102 − 107), indicating the viability of SP as a growth technique to fabricate low cost (Zn, Mg)O-based UV photodetectors reaching short wavelengths.
Resumo:
As a second-order nonlinear optical process, sum-frequency generation is highly surface-specific and accordingly has been developed into a very powerful and versatile surface spectroscopic tool. It has found many unique applications in different disciplines and thus provided many exciting new research opportunities in surface and surface-related science. Selected examples are discussed here to illustrate the power of the technique.
Resumo:
The PhD activity described in this Thesis was focused on the study of metal-oxide wide-bandgap materials, aiming at fabricating new optoelectronic devices such as solar-blind UV photodetectors, high power electronics, and gas sensors. Photocurrent spectroscopy and DC photocurrent time evolution were used to investigate the performance of prototypes under different atmospheres, temperatures and excitation wavelengths (or dark conditions). Cathodoluminescence, absorption spectroscopy, XRD and SEM were used to assess structural, morphologic, electrical and optical properties of materials. This thesis is divided into two main sections, each describing the work done on a different metal-oxide semiconductor. 1) MOVPE-grown Ga2O3 thin films for UV solar-blind photodetectors and high power devices The semiconducting oxides, among them Ga2O3, have been employed for several decades as transparent conducting oxide (TCO) electrodes for fabrication of solar cells, displays, electronic, and opto-electronic devices. The interest was mainly confined to such applications, as these materials tend to grow intrinsically n-type, and attempts to get an effective p-type doping has consistently failed. The key requirements of TCO electrodes are indeed high electrical conductivity and good transparency, while crystallographic perfection is a minor issue. Furthermore, for a long period no high-quality substrates and epi-layers were available, which in turn impeded the development of a truly full-oxide electronics. Recently, Ga2O3 has attracted renewed interest, as large single crystals and high-quality homo- and hetero-epitaxial layers became available, which paved the way to novel application areas. Our research group spent the last two years in developing a low temperature (500-700°C) MOVPE growth procedure to obtain thin films of Ga2O3 on different substrates (Dept. of Physics and IMEM-CNR at UNIPR). We obtained a significant result growing on oriented sapphire epitaxial films of high crystalline, undoped, pure phase -Ga2O3 (hexagonal). The crystallographic properties of this phase were investigated by XRD, in order to clarify the lattice parameters of the hexagonal cell. First design and development of solar blind UV photodetectors based on -phase was carried out and the optoelectronic performance is evaluated by means of photocurrent spectroscopy. The UV-response is adequately fast and reliable to render this unusual phase a subject of great interest for future applications. The availability of a hexagonal phase of Ga2O3 stable up to 700°C, belonging to the same space group of gallium nitride, with high crystallinity and tunable electrical properties, is intriguing in view of the development of nitride-based devices, by taking advantage of the more favorable symmetry and epitaxial relationships with respect to the monoclinic β-phase. In addition, annealing at temperatures higher than 700°C demonstrate that the hexagonal phase converts totally in the monoclinic one. 2) ZnO nano-tetrapods: charge transport mechanisms and time-response in optoelectronic devices and sensors Size and morphology of ZnO at the nanometer scale play a key role in tailoring its physical and chemical properties. Thanks to the possibility of growing zinc oxide in a variety of different nanostructures, there is a great variety of applications, among which gas sensors, light emitting diodes, transparent conducting oxides, solar cells. Even if the operation of ZnO nanostructure-based devices has been recently demonstrated, the mechanisms of charge transport in these assembly is still under debate. The candidate performed an accurate investigation by photocurrent spectroscopy and DC-photocurrent time evolution of electrical response of both single-tetrapod and tetrapod-assembly devices. During the research done for this thesis, a thermal activation energy enables the performance of samples at high temperatures (above about 300°C). The energy barrier is related to the leg-to-leg interconnection in the assembly of nanotetrapods. Percolation mechanisms are responsible for both the very slow photo-response (minutes to hours or days) and the significant persistent photocurrent. Below the bandgap energy, electronic states were investigated but their contribution to the photocurrent are two-three order of magnitude lower than the band edge. Such devices are suitable for employ in photodetectors as well as in gas sensors, provided that the mechanism by which the photo-current is generated and gas adsorption on the surface modify the conductivity of the material are known.