875 resultados para nanometric coatings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

综述热喷涂涂层中残余应力研究进展。主要内容有:对残余应力产生的最新认识,残余应力分布实验测试技术、理论分析模型及其对热喷涂材料界面结合强度影响等领域的研究进展。最后对该领域几个学术界和工程界关注的研究方向进行了展望。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文采用非均匀等参有限元的方法研究了薄膜梯度涂层/均匀基材中的界面裂纹问题,并与双材料界面裂纹情况进行了对比计算。研究表明:在均匀基材上采用梯度涂层,与双材料相比可以有效地降低裂尖场应力强度因子;同时还分析了涂层厚度与梯度参数对界面应力强度因子的影响。结果表明:当薄膜厚度大于或等于裂纹长度时,应力强度因子(K_I、K_(II))对其尺度的变化显得不敏感;对梯度参数的影响而言,当材料性能曲线的幂指数m大于1时,裂尖场的应力强度因子K_(II)相对K_I很小且基本不随m变化,因此裂尖场与均匀材料情况类似;当m小于1时,应用强度因子K_(II)随m减小而急剧增大,裂尖场由K_I及K_(II)控制,断裂趋于混合型。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用等离子电弧沉积的方法,分别在GT35和40CrNiMo钢上沉积厚约为0.5μm的氮化钛(TiN)膜。为了筛选基材,采用纳米压痕和划痕技术,评价膜基界面结合和固体润滑效果。纳米压痕结果,GT35,40CrNiMo和TiN的纳米硬度/弹性模量的典型值分别约为11.5 GPa/330GPa, 6.0 GPa/210GPa, 30GPa/450GPa。纳米划痕结果,GT35有较理想的膜基结合能力;GT35,40CrNiMo,TiN及其有机膜的磨擦系数分别约为0.25,0.45,0.15, 0.10。同40CrNiMo相比,GT35是较为理想的基体材料。纳米压痕和划痕技术能提供丰富的近表面的弹塑性变形、断裂和磨擦等的信息,是评价亚微米薄膜力学性能的有效手段。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

热障涂层材料破坏由大尺度屈曲和层离机制产生,而这些机制又是微裂纹形核、扩展及相互连通结果的积累。由于特殊制备工艺和使用环境,材料性能涉及到许多特殊机制。近半个世纪的研究,人们对其性能有了充分认识。综述近几年的研究结果,内容包括:热生长氧化现象及其热力学描述;热生长应力与材料失效的联系;材料破坏机理与性能控制参数组织的联系;微缺陷演化产生的材料屈曲和层离所需的能量释放率;破坏准则、服役寿命预计模型和评价标准等。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot Dip Aluminized Coatings with different thickness were prepared on Q235 steel in aluminum solutions with different temperature for certain time. Through tensile tests and in-situ SEM observations, the effect of the coating's microstructure on the tensile strength of the samples was studied. It was disclosed at certain aluminum solution temperature,transaction layers mainly composed of Fe2 Al5 phase got thicker with time prolonging, and this changed initial crack's extending direction from parallel with to vertical with stretching direction. The change in crack direction decreased tensile strength of samples, thus made the coating easy to break. It was concluded that the existence of thick Fe2 Al5 phase layer was the basic reason for the lowering of tensile strength of the coating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

《固体力学进展及应用:庆贺李敏华院士90华诞文集》收录了近代固体力学基础理论及其应用领域的重要科技成果和最新进展。作者是在同体力学领域工作多年的资深研究员,他们来自各行各业,有丰富的科研与丁作经验。他们提供的论文在相当程度上反映当前同体力学的发展现状与成就,并能看出发展趋势,对未来研究的课题选择有参考价值。《固体力学进展及应用:庆贺李敏华院士90华诞文集》还收集了李敏华院士的珍贵照片和纪念李敏华院士90华诞的庆贺和回忆文章,具有重要的史料价值。

目录

学术论文
星际超高速公路网
塑性波、动态屈服准则和动态塑性本构关系
LURR's twenty years and its perspective
铜晶体循环形变的晶体学取向特征
损伤、界面与材料强韧化
散斑方法用于疲劳问题研究
微薄梁三点弯曲尺度效应的理论分析
三峡坝区电力设施及水工建筑物在工程爆破引发振动激励下的动力安全评估
基尼系数的估算方法
颗粒增强复合材料的残余热应力分析和增韧效应
先进复合材料及其在航空航天中应用
我国船舶水弹性力学研究的部分进展
车桥耦合系统随机振动的虚拟激励分析
SHPB系统高温实验自动组装技术
Research on performance indices ofvibration isolation system
Dynamic testing of materials with the rotating disk indirect bar-bar tensile impact apparatus
先进复合材料层合板壳的自由振动分析
任意线法
阿基米德原型桥的动力响应
Criteria for the delamination of thermal barrier coatings:with application to thermal gradients
复合材料飞轮储能系统发展现状
The component assembling model and elasto-plastic-damage deformation of materials
Acceleration sensitivity analysis offrequency stability for micro-cavity oscillators
Prediction of muscle forces in human musculoskeletal systemapplication of classic mechanics methods in biomechanics
复合材料设计的原理与应用
A criterion for the avoidance of edge cracking in layered systems
基于滑移构元的多晶金属弹塑性本构模型
浅谈中国古建中斗拱的力学问题
A universal relationship between indentation hardness and flow stress
滑移构元模型和塑性屈服面的演化
加卸载响应比(LURR)与损伤变量(D)关系的研究
永乐大钟一悬挂结构动态响应分析
基于格构模型的混凝土动静态拉伸破坏试验数值模拟
边坡稳定性分析极限平衡法的简化条件
构元组集弹性损伤模型对准脆性材料损伤至断裂各向异性特征的分析
庆贺与回忆
庆贺与回忆
李先生引领我走上力学人生
李敏华先生的爱国情结
向李敏华先生学习
师恩难忘——恭贺李敏华先生九十大寿
跟随李敏华先生工作的日子

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To meet the demand of modern acoustic absorbing material for which acoustic absorbing frequency region can be readily tailored, we introduced woodpile structure into locally resonant phononic crystal (LRPC) and fabricated an underwater acoustic absorbing material, which is called locally resonant phononic woodpile (LRPW). Experimental results show that LRPW has a strong capability of absorbing sound in a wide frequency range. Further theoretical research revealed that LRPC units and woodpile structure in LRPW play an important role in realization of wide band underwater strong acoustic absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

254 p : il, graf. col.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process of laser cladding Ni-CF-C-CaF2 mixed powders to form a multifunctional composite coatingd on gamma-TiAl substrate was carried out. The microstructure of the coating was examined using XRD, SEM and EDS. The coating has a unique microstructure consisting of primary dendrite or short-stick TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (gamma) matrix. The average microhardness of the composite coatings is approximately HV 650 and it is 2-factor greater than that of the TiAl substrate. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the thermally induced cracking behavior of a segmented coating has been investigated. The geometry under consideration is a hollow cylinder with a segmented coating deposited onto its outer surface. The segmentation cracks are modeled as a periodic array of axial edge cracks. The finite element method is utilized to obtain the solution of the multiple crack problem and the Thermal Stress Intensity Factors (TSIFs) are calculated. Based on dimensional analysis, the main parameters affecting TSIFs are identified. It has been found that the TSIF is a monotonically increasing function of segmentation crack spacing. This result confirms that a segmented coating exhibits much higher thermal shock resistance than an intact counterpart, if only the segmentation crack spacing is narrow enough. The dependence of TSIF on some other parameters, such as normalized time, segmentation crack depth, convection severity as well as material constants, has also been discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on mechanism of ceramic coating on Al-Si alloys with bulk primary Si using plasma electrolytic oxidation (PEO) technology. Al-Si alloys with 27-32% Si in weight were used as substrates. The morphologies, composition and microstructure of PEO coatings were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray system (EDX). Results showed that the PEO process had four different stages. The effect of bulk Si is greatly on the morphology and composition of coatings at first three stages. Anodic oxide films formed on Al and Si phases, respectively. When the voltage exceeded 40 V, glow appeared and concentrated on the localized zone of interface of Al and Si phase. Al-Si-O compounds formed and covered on the dendrite Si phase surface, and the coating on bulk Si, which was silicon oxide, was rougher than that on other phase. If the treatment time was long enough, the coatings with uniform surface morphologies and elements distribution will be obtained but the microstructure of inner layer is looser due to the bulk Si.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A preliminary experiment was carried out to validate the feasibility of the method of impact by a front-end-coated bullet to evaluate the interface adhesion between film and substrate. The theoretical description of the initiation, propagation and evolution of the stress pulse during impact was generalized and formulized. The effects of the crucial parameters on the interface stress were further investigated with FEM. The results found the promising prospect of the application of such a method and provided useful guidance for experimental design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulatory action to protect California’s coastal water quality from degradation by copper from recreational boats’ antifouling paints interacts with efforts to prevent transport of invasive, hull-fouling species. A copper regulatory program is in place for a major yacht basin in northern San Diego Bay and in process for other major, California boat basins. “Companion” fouling control strategies are used with copper-based antifouling paints, as some invasive species have developed resistance to the copper biocide. Such strategies are critical for boats with less toxic or nontoxic hull coatings. Boat traffic along over 3,000 miles of coastline in California and Baja California increases invasive species transport risks. For example, 80% of boats in Baja California marinas are from the United States, especially California. Policy makers, boating businesses and boat owners need information on costs and supply-side capacity for effective fouling control measures to co-manage water quality and invasive species concerns. (PDF contains 3 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes.

Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O+(g), can protonate most (non-alkane) organic species, whereas H3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the ‘function’ of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided valuable information regarding the structure of aqueous interfaces, but structure alone is inadequate to decipher the function. By similar analogy, theoretical predictions based on classical molecular dynamics have remained limited in their scope.

Recently, we have adapted an analytical electrospray ionization mass spectrometer (ESIMS) for probing reactions at the gas-liquid interface in real time. This technique is direct, surface-specific,and provides unambiguous mass-to-charge ratios of interfacial species. With this innovation, we have been able to investigate the following:

1. How do anions mediate proton transfers at the air-water interface?

2. What is the basis for the negative surface potential at the air-water interface?

3. What is the mechanism for catalysis ‘on-water’?

In addition to our experiments with the ESIMS, we applied quantum mechanics and molecular dynamics to simulate our experiments toward gaining insight at the molecular scale. Our results unambiguously demonstrated the role of electrostatic-reorganization of interfacial water during proton transfer events. With our experimental and theoretical results on the ‘superacidity’ of the surface of mildly acidic water, we also explored implications on atmospheric chemistry and green chemistry. Our most recent results explained the basis for the negative charge of the air-water interface and showed that the water-hydrophobe interface could serve as a site for enhanced autodissociation of water compared to the condensed phase.