961 resultados para mutation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 9p involved in the development of melanoma. Although LOH at 9p has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 9p. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations by single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele. Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748 the markers closest to CDKN2A. Of the remaining 11 tumors with LOH 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion. This report supports the conclusions of previous studies that a least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a genome-scanning approach to search for oncogenes, a recent report identifies somatic mutations in the signaling gene BRAF that are particularly prevalent in melanoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cancer Genome Project intends to search every human gene for cancer-related mutations. Its first success is the discovery of such mutations in the BRAF gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deletions detected in cytogenetic and loss of heterozygosity (LOH) studies indicate that at least one tumour suppressor gene maps to the long arm of chromosome 10. Previous deletion mapping studies have observed LOH on 10q in about 30% of melanomas analysed. The PTEN gene, mapping to chromosome band 10q23.3, encodes a protein with both lipid and protein phosphatase activity. Somatic mutations and deletions in have been detected in a variety of cell lines and tumours, including melanoma samples. We performed mutation analyses and extensive allelic loss studies to investigate the role this gene plays in melanoma pathogenesis. We found that a total of 34 out of 57 (60%) melanoma cell lines carried hemizygous deletions of chromosome 10q encompassing the PTEN locus. A further three cell lines carried smaller deletions excluding PTEN. Inactivation of both PTEN alleles by exon-specific homozygous deletion or mutation was observed in 13 out of 57 (23%) melanoma cell lines. The mutation spectrum observed does not indicate an important role for ultraviolet radiation in the genesis of these mutations, and evidence from three cell lines supports the acquisition of PTEN aberrations in culture. Ten out of 49 (20%) matched melanoma tumour/normal samples harboured hemizygous deletions of either the whole chromosome or most of the long arm. Mutations within were detected in only one of the 10 tumours demonstrating LOH at 10q23 that were analysed. These results suggest that PTEN inactivation may be important for the propagation of melanoma cells in culture, and that another chromosome 10 tumour suppressor gene may be important for melanoma pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the timing of mutations in BRAF (v-raf murine sarcoma viral oncogene homolog B1) during melanocytic neoplasia, we carried out mutation analysis on microdissected melanoma and nevi samples. We observed mutations resulting in the V599E amino-acid substitution in 41 of 60 (68%) melanoma metastases, 4 of 5 (80%) primary melanomas and, unexpectedly, in 63 of 77 (82%) nevi. These data suggest that mutational activation of the RAS/RAF/MAPK pathway in nevi is a critical step in the initiation of melanocytic neoplasia but alone is insufficient for melanoma tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although molecularly targeted therapies have been effective in some cancer types, no targeted therapy is approved for use in endometrial cancer. The recent identification of activating mutations in fibroblast growth factor receptor 2 (FGFR2) in endometrial tumors has generated a new avenue for the development of targeted therapeutic agents. The majority of the mutations identified are identical to germline mutations in FGFR2 and FGFR3 that cause craniosynostosis and hypochondroplasia syndromes and result in both ligand-independent and ligand-dependent receptor activation. Mutations that predominantly occur in the endometrioid subtype of endometrial cancer, are mutually exclusive with KRAS mutation, but occur in the presence of PTEN abrogation. In vitro studies have shown that endometrial cancer cell lines with activating FGFR2 mutations are selectively sensitive to a pan-FGFR inhibitor, PD173074. Several agents with activity against FGFRs are currently in clinical trials. Investigation of these agents in endometrial cancer patients with activating FGFR2 mutations is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syntaxin 11 (Stx11) is a SNARE protein enriched in cells of the immune system. Loss or mutation of Stx11 results in familial hemophagocytic lymphohistiocytosis type-4 (FHL-4), an autosomal recessive disorder of immune dysregulation characterized by high levels of inflammatory cytokines along with defects in T-cell and natural killer cell function. We show here Stx11 is located on endosomalmembranes including late endosomes and lysosomes in macrophages. While Stx11 did not form a typical trans-SNARE complex, it did bind to the Q-SNARE Vti1b and was able to regulate the availability of Vti1b to form the Q-SNARE complexes Stx6/Stx7/Vtib and Stx7/Stx8/Vti1b. The mutant form of Stx11 sequestered Vti1b from forming the Q-SNARE complex that mediates late endosome to lysosome fusion. Depletion of Stx11 in activated macrophages leads to an accumulation of enlarged late endocytic compartments, increased trafficking to the cell surface and inhibition of late endosome to lysosome fusion. These phenotypes arerescued by the expression of an siRNA-resistant Stx11 construct in Stx11-depleted cells. Our results suggest that by regulating the availability of Vti1b, Stx11 regulates trafficking steps between late endosomes, lysosomes and the cell surface in macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (<1–2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222–705 ka), Neandertals (108 ka; 70–156 ka), and modern humans (76 ka; 47–110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term changes in the genetic composition of a population occur by the fixation of new mutations, a process known as substitution. The rate at which mutations arise in a population and the rate at which they are fixed are expected to be equal under neutral conditions (Kimura, 1968). Between the appearance of a new mutation and its eventual fate of fixation or loss, there will be a period in which it exists as a transient polymorphism in the population (Kimura and Ohta, 1971). If the majority of mutations are deleterious (and nonlethal), the fixation probabilities of these transient polymorphisms are reduced and the mutation rate will exceed the substitution rate (Kimura, 1983). Consequently, different apparent rates may be observed on different time scales of the molecular evolutionary process (Penny, 2005; Penny and Holmes, 2001). The substitution rate of the mitochondrial protein-coding genes of birds and mammals has been traditionally recognized to be about 0.01 substitutions/site/million years (Myr) (Brown et al., 1979; Ho, 2007; Irwin et al., 1991; Shields and Wilson, 1987), with the noncoding D-loop evolving several times more quickly (e.g., Pesole et al., 1992; Quinn, 1992). Over the past decade, there has been mounting evidence that instantaneous mutation rates substantially exceed substitution rates, in a range of organisms (e.g., Denver et al., 2000; Howell et al., 2003; Lambert et al., 2002; Mao et al., 2006; Mumm et al., 1997; Parsons et al., 1997; Santos et al., 2005). The immediate reaction to the first of these findings was that the polymorphisms generated by the elevated mutation rate are short-lived, perhaps extending back only a few hundred years (Gibbons, 1998; Macaulay et al., 1997). That is, purifying selection was thought to remove these polymorphisms very rapidly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetic modifiers are the proteins involved in establishing and maintaining the epigenome of an organism. They are particularly important for development. Changes in epigenetic modifiers have been shown be lethal, or cause diseases. Our laboratory has developed an ENU mutagenesis screen to produce mouse mutants displaying altered epigenetic gene silencing. The screen relies on a GFP transgene that is expressed in red blood cells in a variegated manner. In the orginal transgenic FVB mice expression occurs in approximately 55% of red blood cells. During the course of my Masters, I characterised four different Mommes (Modifiers of murine metastable epiallele), MommeD32, MommeD33, MommeD35 and MommeD36. For each Momme, I identified the underlying mutation, and observed the corresponding phenotype. In MommeD32 the causative mutation is in Dnmt1, (DNA methyltransferase 1). This gene was previously identified in the screen, as MommeD2, and the new allele, MommeD32 has a change in the BAH domain of the protein. MommeD33 is the result of a change at the transgene itself. MommeD35 carries a mutation in Suv39h1 (suppressor of variegation 3-9 homolog 1). This gene has not previously been identified in the screen, but it is a known epigenetic modifier. MommeD36 had the same ENU treated sire as MommeD32, and I found that it has the same mutation as MommeD32. These mutant strains provide valuable tools that can be used to further our knowledge of epigenetic reprogramming. An example being the cancer study done with MommeD9 which has a mutation in Trim28. By crossing MommeD9+/- mutant mice with Trp53+/- mice, it can be seen if Trim28 has an effect on the rate of tumour genesis. However no clear effect of Trim28 haploinsufficiency can be observed in Trp53+/- mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35-7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09-3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05-0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11–19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours.