965 resultados para method applied to liquid samples
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
Traces of backspatter recovered from the inside of the barrel of a gun that was used to deliver suicidal or homicidal contact shots may be a source of valuable forensic evidence and first systematic investigations of the persistence of victim DNA from inside firearms have been presented. The aim of the present study was to include victim RNA in such analyses to determine the origin of tissues in addition and parallel to standard DNA profiling for forensic identification purposes. In a first step, suitable mRNA (C1orf61) and micro-RNAs (miR-124a and miR-124*) that are primarily expressed in brain tissue were selected from potential candidates and confirmed using quantitative PCR (qPCR). Secondly, a co-extraction procedure for RNA and DNA was established and brain differentiability of the selected RNAs was demonstrated via qPCR using samples from experimental shots at ballistic models. In a third step, this procedure was successfully applied to analyse samples from real casework comprising eight cases of suicidal contact shots. In this pilot study, we are first to report the possibility of co-extracting mRNA, miRNA and DNA from ballistic trace samples collected from the inside of firearms and we demonstrate that RNA and DNA based analyses can be performed in parallel to produce informative and highly complementary evidence.
Resumo:
BACKGROUND AND PURPOSE The posterior circulation Acute Stroke Prognosis Early CT Score (pc-APECTS) applied to CT angiography source images (CTA-SI) predicts the functional outcome of patients in the Basilar Artery International Cooperation Study (BASICS). We assessed the diagnostic and prognostic impact of pc-ASPECTS applied to perfusion CT (CTP) in the BASICS registry population. METHODS We applied pc-ASPECTS to CTA-SI and cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) parameter maps of BASICS patients with CTA and CTP studies performed. Hypoattenuation on CTA-SI, relative reduction in CBV or CBF, or relative increase in MTT were rated as abnormal. RESULTS CTA and CTP were available in 27/592 BASICS patients (4.6%). The proportion of patients with any perfusion abnormality was highest for MTT (93%; 95% confidence interval [CI], 76%-99%), compared with 78% (58%-91%) for CTA-SI and CBF, and 46% (27%-67%) for CBV (P < .001). All 3 patients with a CBV pc-ASPECTS < 8 compared to 6/23 patients with a CBV pc-ASPECTS ≥ 8 had died at 1 month (RR 3.8; 95% CI, 1.9-7.6). CONCLUSION CTP was performed in a minority of the BASICS registry population. Perfusion disturbances in the posterior circulation were most pronounced on MTT parameter maps. CBV pc-ASPECTS < 8 may indicate patients with high case fatality.
Resumo:
Purpose. Fluorophotometry is a well validated method for assessing corneal permeability in human subjects. However, with the growing importance of basic science animal research in ophthalmology, fluorophotometry’s use in animals must be further evaluated. The purpose of this study was to evaluate corneal epithelial permeability following desiccating stress using the modified Fluorotron Master™. ^ Methods. Corneal permeability was evaluated prior to and after subjecting 6-8 week old C57BL/6 mice to experimental dry eye (EDE) for 2 and 5 days (n=9/time point). Untreated mice served as controls. Ten microliters of 0.001% sodium fluorescein (NaF) were instilled topically into each mouse’s left eye to create an eye bath, and left to permeate for 3 minutes. The eye bath was followed by a generous wash with Buffered Saline Solution (BSS) and alignment with the Fluorotron Master™. Seven corneal scans using the Fluorotron Master were performed during 15 minutes (1 st post-wash scans), followed by a second wash using BSS and another set of five corneal scans (2nd post-wash scans) during the next 15 minutes. Corneal permeability was calculated using data calculated with the FM™ Mouse software. ^ Results. When comparing the difference between the Post wash #1 scans within the group and the Post wash #2 scans within the group using a repeated measurement design, there was a statistical difference in the corneal fluorescein permeability of the Post-wash #1 scans after 5 days (1160.21±108.26 vs. 1000.47±75.56 ng/mL, P<0.016 for UT-5 day comparison 8 [0.008]), but not after only 2 days of EDE compared to Untreated mice (1115.64±118.94 vs. 1000.47±75.56 ng/mL, P>0.016 for UT-2 day comparison [0.050]). There was no statistical difference between the 2 day and 5 day Post wash #1 scans (P=.299). The Post-wash #2 scans demonstrated that EDE caused a significant NaF retention at both 2 and 5 days of EDE compared to baseline, untreated controls (1017.92±116.25, 1015.40±120.68 vs. 528.22±127.85 ng/mL, P<0.05 [0.0001 for both]). There was no statistical difference between the 2 day and 5 day Post wash #2 scans (P=.503). The comparison between the Untreated post wash #1 with untreated post wash #2 scans using a Paired T-test showed a significant difference between the two sets of scans (P=0.000). There is also a significant difference between the 2 day comparison and the 5 day comparison (P values = 0.010 and 0.002, respectively). ^ Conclusion. Desiccating stress increases permeability of the corneal epithelium to NaF, and increases NaF retention in the corneal stroma. The Fluorotron Master is a useful and sensitive tool to evaluate corneal permeability in murine dry eye, and will be a useful tool to evaluate the effectiveness of dry eye treatments in animal-model drug trials.^
Resumo:
Calving is a major mechanism of ice discharge of the Antarctic and Greenland ice sheets, and a change in calving front position affects the entire stress regime of marine terminating glaciers. The representation of calving front dynamics in a 2-D or 3-D ice sheet model remains non-trivial. Here, we present the theoretical and technical framework for a level-set method, an implicit boundary tracking scheme, which we implement into the Ice Sheet System Model (ISSM). This scheme allows us to study the dynamic response of a drainage basin to user-defined calving rates. We apply the method to Jakobshavn Isbræ, a major marine terminating outlet glacier of the West Greenland Ice Sheet. The model robustly reproduces the high sensitivity of the glacier to calving, and we find that enhanced calving triggers significant acceleration of the ice stream. Upstream acceleration is sustained through a combination of mechanisms. However, both lateral stress and ice influx stabilize the ice stream. This study provides new insights into the ongoing changes occurring at Jakobshavn Isbræ and emphasizes that the incorporation of moving boundaries and dynamic lateral effects, not captured in flow-line models, is key for realistic model projections of sea level rise on centennial timescales.