887 resultados para matrix data analytics
Resumo:
Aims: To describe a local data linkage project to match hospital data with the Australian Institute of Health and Welfare (AIHW) National Death Index (NDI) to assess longterm outcomes of intensive care unit patients. Methods: Data were obtained from hospital intensive care and cardiac surgery databases on all patients aged 18 years and over admitted to either of two intensive care units at a tertiary-referral hospital between 1 January 1994 and 31 December 2005. Date of death was obtained from the AIHW NDI by probabilistic software matching, in addition to manual checking through hospital databases and other sources. Survival was calculated from time of ICU admission, with a censoring date of 14 February 2007. Data for patients with multiple hospital admissions requiring intensive care were analysed only from the first admission. Summary and descriptive statistics were used for preliminary data analysis. Kaplan-Meier survival analysis was used to analyse factors determining long-term survival. Results: During the study period, 21 415 unique patients had 22 552 hospital admissions that included an ICU admission; 19 058 surgical procedures were performed with a total of 20 092 ICU admissions. There were 4936 deaths. Median follow-up was 6.2 years, totalling 134 203 patient years. The casemix was predominantly cardiac surgery (80%), followed by cardiac medical (6%), and other medical (4%). The unadjusted survival at 1, 5 and 10 years was 97%, 84% and 70%, respectively. The 1-year survival ranged from 97% for cardiac surgery to 36% for cardiac arrest. An APACHE II score was available for 16 877 patients. In those discharged alive from hospital, the 1, 5 and 10-year survival varied with discharge location. Conclusions: ICU-based linkage projects are feasible to determine long-term outcomes of ICU patients
Resumo:
Analytical and computational models of the intervertebral disc (IVD) are commonly employed to enhance understanding of the biomechanics of the human spine and spinal motion segments. The accuracy of these models in predicting physiological behaviour of the spine is intrinsically reliant on the accuracy of the material constitutive representations employed to represent the spinal tissues. There is a paucity of detailed mechanical data describing the material response of the reinforcedground matrix in the anulus fibrosus of the IVD. In the present study, the ‘reinforcedground matrix’ was defined as the matrix with the collagen fibres embedded but not actively bearing axial load, thus incorporating the contribution of the fibre-fibre and fibre-matrix interactions. To determine mechanical parameters for the anulus ground matrix, mechanical tests were carried out on specimens of ovine anulus, under unconfined uniaxial compression, simple shear and biaxial compression. Test specimens of ovine anulus fibrosus were obtained with an adjacent layer of vertebral bone/cartilage on the superior and inferior specimen surface. Specimen geometry was such that there were no continuous collagen fibres coupling the two endplates. Samples were subdivided according to disc region - anterior, lateral and posterior - to determine the regional inhomogeneity in the anulus mechanical response. Specimens were loaded at a strain rate sufficient to avoid fluid outflow from the tissue and typical stress-strain responses under the initial load application and under repeated loading were determined for each of the three loading types. The response of the anulus tissue to the initial and repeated load cycles was significantly different for all load types, except biaxial compression in the anterior anulus. Since the maximum applied strain exceeded the damage strain for the tissue, experimental results for repeated loading reflected the mechanical ability of the tissue to carry load, subsequent to the initiation of damage. To our knowledge, this is the first study to provide experimental data describing the response of the ‘reinforcedground matrix’ to biaxial compression. Additionally, it is novel in defining a study objective to determine the regionally inhomogeneous response of the ‘reinforcedground matrix’ under an extensive range of loading conditions suitable for mechanical characterisation of the tissue. The results presented facilitate the development of more detailed and comprehensive constitutive descriptions for the large strain nonlinear elastic or hyperelastic response of the anulus ground matrix.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.
Resumo:
There is a notable shortage of empirical research directed at measuring the magnitude and direction of stress effects on performance in a controlled environment. One reason for this is the inherent difficulties in identifying and isolating direct performance measures for individuals. Additionally most traditional work environments contain a multitude of exogenous factors impacting individual performance, but controlling for all such factors is generally unfeasible (omitted variable bias). Moreover, instead of asking individuals about their self-reported stress levels we observe workers' behavior in situations that can be classified as stressful. For this reason we have stepped outside the traditional workplace in an attempt to gain greater controllability of these factors using the sports environment as our experimental space. We empirically investigate the relationship between stress and performance, in an extreme pressure situation (football penalty kicks) in a winner take all sporting environment (FIFA World Cup and UEFA European Cup competitions). Specifically, we examine all the penalty shootouts between 1976 and 2008 covering in total 16 events. The results indicate that extreme stressors can have a positive or negative impact on Individuals' performance. On the other hand, more commonly experienced stressors do not affect professionals' performances.
Resumo:
Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.
Resumo:
Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.
Resumo:
The technological environment in which Australian SMEs operate can be best described as dynamic and vital. The rate of technological change provides the SME owner/manager a complex and challenging operational context. Wireless applications are being developed that provide mobile devices with Internet content and e-business services. In Australia the adoption of e-commerce by large organisations has been relatively high, however the same cannot be said for SMEs where adoption has been slower than other developed countries. In contrast however mobile telephone adoption and diffusion is relatively high by SMEs. This exploratory study identifies attitudes, perceptions and issues for mobile data technologies by regional SME owner/managers across a range of industry sectors. The major issues include the sector the firm belongs to, the current adoption status of the firm, the level of mistrust of the IT industry, the cost of the technologies and the applications and attributes of the technologies.
Resumo:
The technological environment in which contemporary small and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices, communication, e-commerce and security.
Resumo:
The seemingly exponential nature of technological change provides SMEs with a complex and challenging operational context. The development of infrastructures capable of supporting the wireless application protocol (WAP) and associated 'wireless' applications represents the latest generation of technological innovation with potential appeals to SMEs and end-users alike. This paper aims to understand the mobile data technology needs of SMEs in a regional setting. The research was especially concerned with perceived needs across three market segments : non-adopters, partial-adopters and full-adopters of new technology. The research was exploratory in nature as the phenomenon under scrutiny is relatively new and the uses unclear, thus focus groups were conducted with each of the segments. The paper provides insights for business, industry and academics.
Resumo:
The technological environment in which contemporary small- and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters, and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall, the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices; communication, e-commerce and security
Resumo:
The technological environment in which contemporary small and medium-sized enterprises (SMEs) operate can only be described as dynamic. The seemingly exponential nature of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the small and medium-sized enterprise a complex and challenging operational context. The development of infrastructures capable of supporting the Wireless Application Protocol (WAP)and associated 'wireless' applications represents the latest generation of technological innovation with potential appeal to SMEs and end-users alike. The primary aim of this research was to understand the mobile data technology needs of SMEs in a regional setting. The research was especially concerned with perceived needs across three market segments; non-adopters of new technology, partial-adopters of new technology and full-adopters of new technology. Working with an industry partner, focus groups were conducted with each of these segments with the discussions focused on the use of the latest WP products and services. Some of the results are presented in this paper.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
This paper introduces a novel strategy for the specification of airworthiness certification categories for civil unmanned aircraft systems (UAS). The risk-based approach acknowledges the fundamental differences between the risk paradigms of manned and unmanned aviation. The proposed airworthiness certification matrix provides a systematic and objective structure for regulating the airworthiness of a diverse range of UAS types and operations. An approach for specifying UAS type categories is then discussed. An example of the approach, which includes the novel application of data-clustering algorithms, is presented to illustrate the discussion.
Resumo:
This paper investigates the use of the FAB-MAP appearance-only SLAM algorithm as a method for performing visual data association for RatSLAM, a semi-metric full SLAM system. While both systems have shown the ability to map large (60-70km) outdoor locations of approximately the same scale, for either larger areas or across longer time periods both algorithms encounter difficulties with false positive matches. By combining these algorithms using a mapping between appearance and pose space, both false positives and false negatives generated by FAB-MAP are significantly reduced during outdoor mapping using a forward-facing camera. The hybrid FAB-MAP-RatSLAM system developed demonstrates the potential for successful SLAM over large periods of time.