977 resultados para gene mutations
Resumo:
The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.
Resumo:
Introduction: Brief overview of Bone Development Disorders of the Skeleton Cartilage-Hair-Hypoplasia The RMRP gene Specific Aims Material and Methods Results: Clinical Studies Mutation Screen of CHH patients Search for Modifiers Functional Studies of human RMRP Mouse Studies Yeast Studies Discussion: Conclusions Summmary Appendix
Resumo:
The establishment of appropriate synapses between neurons and their target cells is an essential requirement for the formation of functional neuronal circuits. However, there is very little insight into the mechanisms underlying de novo formation of synapses and synaptic terminals. To identify novel genes involved in signalling or structural aspects of these processes I capitalised on possibilities provided by the model organism Drosophila. Thus, I contributed to a screen of a collection of third chromosomal mutations (Salzberg et al., 1997, Genetics 147, 1723ff.) selecting those mutant strains displaying structural defects of Drosophila neuromuscular junctions (NMJ). Carrying out genetic mapping experiments, I could assign 7 genes to interesting candidate mutations. All 7 mutations selected in this process cause size alterations of the embryonic NMJ, and one shows additional disturbances in the distribution of synaptic markers. 4 of these turned out to be transcription factors, not falling into the remit of this project. Only for one of these, the neuronal transcription factor Castor, I could show that its overgrown mutant NMJ phenotype is due to an increase in the number of motorneurons. The remaining genes encode a potential nitrophenylphosphatase, the translation initiation factor eIF4AIII, and a novel protein Waharan. Unfortunately, the nitophenylphosphatase gene was identified too late to carry out functional studies in the context of this project, but potential roles are discussed. eIF4AIII promotes NMJ size tempting to speculate that local translation at the NMJ is affected. I found that the synaptic scaffolding molecule Discs large (Dlg; orthologue of PSD95) is upregulated at eIF4AIII mutant NMJs. Targeted upregulation of Dlg can not mimic the eIF4AIII mutant phenotype, but dlg mutations suppress it. Therefore, Dlg function is required but not sufficient in this context. My findings are discussed in detail, pointing out future directions. The main focus of this work is the completely novel gene waharan (wah), an orthologue of the human gene KIAA1267 encoding a big brain protein of likewise unknown structure and function. My studies show that mutations or RNAi knock-down of wah cause NMJ overgrowth and reveal additional crucial roles in the patterning of wing imginal discs. RNAi studies suggest Wah to be required pre- and postsynaptically at NMJs and, consistently, wah is transcribed in the nervous system and muscles. Anti-Wah antisera were produced but could no longer be tested here, but preliminary studies with newly generated HA-targeted constructs suggest that Wah localises at NMJs and in neuronal nuclei. In silico analyses predict Wah to be structurally related to the Rad23-family of proteins, likely to target ubiquitinated proteins to the proteasome for degradation (Chen et al., 2002, Mol Cell Biol 22, 4902ff.) . In agreement with this prediction, poly-ubiquitinated proteins were found to accumulate in the absence of wah function, and wah-like mutant phenotypes were induced in NMJs and wing discs by knocking down proteasome function. My analysis further revealed that poly-ubiquitinated proteins are reduced in nuclei of wah mutant neurons and muscles, suggesting that Wah may play additional roles in ubiquitin-mediated nuclear import. Taken together, this study has uncovered a number of interesting candidate genes required for the de novo formation of Drosophila NMJs. 3 of these genes fell into the focus of this project. As discussed in detail, discovery of these genes and insights gained into their function have high potential to be translatable into vertebrate systems.
Resumo:
Familial cutaneous mastocytosis is an exceptional condition of unknown etiology. In this study we report the largest series of patients with familial cutaneous mastocytosis without other manifestations (18 affected subjects from seven unrelated families), and we investigate the role of germ-line KIT mutations in the pathogenesis of the disease. The mean age at onset was 5.4 years (range from birth to 22 years), and the clinical behavior was variable over a mean follow up period of 15.1 years (range 2-36): improvement in seven, stability in eight and worsening in the remaining three patients. The pattern of inheritance was compatible with an autosomal dominant trait with incomplete penetrance; a female preponderance (14 females vs 4 males, ratio 3.5:1) was noted; among the six women who have been pregnant at least once, three experienced important clinical changes during pregnancy. No germ-line mutation was found in the exons 10, 11, and 17 of the KIT proto-oncogene, which are the most commonly mutated exons in sporadic mastocytosis. However, in the majority of affected subjects we found the Met541Leu polymorphic variant of the KIT gene, which seems to confer a growth advantage to mast cells in vitro. This observation further suggests that the Met541Leu may be a predisposing factor of cutaneous mastocytosis, although it seems to be neither necessary nor sufficient for the development of the disease.
Resumo:
Pochi studi hanno indagato il profilo dei sintomi non-motori nella malattia di Parkinson associata al gene glucocerebrosidasi (GBA). Questo studio è mirato alla caratterizzazione dei sintomi non-motori, con particolare attenzione alla valutazione delle funzioni neurovegetativa, cognitiva e comportamentale, nel parkinsonismo associato a mutazione del gene GBA con la finalità di verificare se tali sintomi non-motori siano parte dello spettro clinico di questi pazienti. E’ stato condotto su una coorte di pazienti affetti da malattia di Parkinson che erano stati tutti sottoposti ad una analisi genetica per la ricerca di mutazioni in uno dei geni finora associati alla malattia di Parkinson. All’interno di questa coorte omogenea sono stati identificati due gruppi diversi in relazione al genotipo (pazienti portatori della mutazione GBA e pazienti non portatori di nessuna mutazione) e le caratteristiche non-motorie sono state confrontate nei due gruppi. Sono state pertanto indagati il sistema nervoso autonomo, mediante studio dei riflessi cardiovascolari e analisi dei sintomi disautonomici, e le funzioni cognitivo-comportamentali in pazienti affetti da malattia di Parkinson associata a mutazione del gene GBA. I risultati sono stati messi a confronto con il gruppo di controllo. Lo studio ha mostrato che i pazienti affetti da malattia di Parkinson associata a mutazione del gene GBA presentavano maggiore frequenza di disfunzioni ortosimpatiche, depressione, ansia, apatia, impulsività, oltre che di disturbi del controllo degli impulsi rispetto ai pazienti non portatori. In conclusione, i pazienti GBA positivi possono esprimere una sintomatologia non-motoria multidominio con sintomi autonomici, cognitivi e comportamentali in primo piano. Pertanto l’impostazione terapeutica in questi pazienti dovrebbe includere una accurata valutazione dei sintomi non-motori e un loro monitoraggio nel follow up clinico, allo scopo di ottimizzare i risultati e ridurre i rischi di complicazioni.
Resumo:
Canavan disease (CD) is a rare leukodystrophy caused by loss-of-function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme. It is characterised by the accumulation of the ASPA substrate N-acetylaspartate (NAA) in brain, blood and urine, leading to a spongiform vacuolisation of the brain, severe motoric and cognitive impairments and premature death. To date, no therapy is available due to the lack of a gene-transfer system allowing transgene expression in oligodendrocytes (OLs) and the restoration of the missing enzyme. Hence, the aim of this study was to establish a novel gene-transfer system and its preclinical evaluation in a CD animal model.rnIn the first part of this thesis, a novel ASPA mouse mutant was generated. A βgeo cassette (including the genes encoding β-galactosidase and neomycin) flanked by frt sites was inserted into intron 1 of the intact aspa gene. Additionally, exon 2 was flanked by loxP sites for optional conditional deletion of the targeted locus. The resulting ASPA-deficient aspalacZ/lacZ-mouse was found to be an accurate model of CD and an important tool to identify novel aspects of its complex pathology. Homozygous mutants showed a CD-like histopathology, neurological impairment, behavioural deficits as well as a reduced body weight. Additionally, MRI data revealed changes in brain metabolite composition. rnRecombinant adeno-associated viral (rAAV) vectors have become a versatile tool for gene transfer to the central nervous system because they are efficient, non-toxic and replication-deficient. Based on the natural neurotropism of AAV vectors, AAV-based gene delivery has entered the clinics for the treatment of neurodegenerative diseases. However, the lack of AAV vectors with oligodendroglial tropism has precluded gene therapy for leukodystrophies. In the second part of this work, it was shown that the transduction profile of established AAV serotypes can be targeted towards OLs in a transcriptional approach, using the oligodendrocyte-specific myelin basic protein (MBP) promoter to drive transgene expression in OLs.rnIn the last part of this work, the therapeutic efficacy of AAV-mediated aspa gene transfer to OLs of juvenile aspalacZ/lacZ mice was evaluated. AAV-aspa injections into multiple sites of the brain parenchyma resulted in transduction of OLs in the grey and white matter throughout the brain. Histological abnormalities in the brain of ASPA-deficient mice were ameliorated and accompanied by a reduction of NAA levels. Furthermore, the treatment resulted in normalisation of body weight, motor function and nest-building behaviour. These data provide a proof-of-concept for a successful gene therapy of Canavan disease. This might pave the way towards translation into clinical application and serve as the basis for the genetic treatment of other leukodystrophies.
Resumo:
Mutations in the dystrophin gene have long been recognised as a cause of mental retardation. However, for reasons that are unclear, some boys with dystrophin mutations do not show general cognitive deficits. To investigate the relationship between dystrophin mutations and cognition, the general intellectual abilities of a group of 25 boys with genetically confirmed Duchenne muscular dystrophy were evaluated. Furthermore, a subgroup underwent additional detailed neuropsychological assessment. The results showed a mean full scale intelligence quotient (IQ) of 88 (standard deviation 24). Patients performed very poorly on various neuropsychological tests, including arithmetics, digit span tests and verbal fluency. No simple relationship between dystrophin mutations and cognitive functioning could be detected. However, our analysis revealed that patients who lack the dystrophin isoform Dp140 have significantly greater cognitive problems.
Resumo:
Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the 'nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.
Resumo:
Multiple cutaneous and uterine leiomyomata syndrome (MCUL; MIM 150800) is a rare condition that sometimes predisposes to renal cancer. It is caused by deleterious mutations in the fumarate hydratase (FH) gene. In many patients, skin leiomyomas have been reported to develop according to a segmental type 1 or type 2 distribution. We report a patient showing multiple leiomyomas distributed according to a segmental type 2 distribution and covering several areas exclusively on the left side of his body.
Resumo:
A growing world population, changing climate and limiting fossil fuels will provide new pressures on human production of food, medicine, fuels and feed stock in the twenty-first century. Enhanced crop production promises to ameliorate these pressures. Crops can be bred for increased yields of calories, starch, nutrients, natural medicinal compounds, and other important products. Enhanced resistance to biotic and abiotic stresses can be introduced, toxins removed, and industrial qualities such as fibre strength and biofuel per mass can be increased. Induced and natural mutations provide a powerful method for the generation of heritable enhanced traits. While mainly exploited in forward, phenotype driven, approaches, the rapid accumulation of plant genomic sequence information and hypotheses regarding gene function allows the use of mutations in reverse genetic approaches to identify lesions in specific target genes. Such gene-driven approaches promise to speed up the process of creating novel phenotypes, and can enable the generation of phenotypes unobtainable by traditional forward methods. TILLING (Targeting Induced Local Lesions IN Genome) is a high-throughput and low cost reverse genetic method for the discovery of induced mutations. The method has been modified for the identification of natural nucleotide polymorphisms, a process called Ecotilling. The methods are general and have been applied to many species, including a variety of different crops. In this chapter the current status of the TILLING and Ecotilling methods and provide an overview of progress in applying these methods to different plant species, with a focus on work related to food production for developing nations.
Resumo:
Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.
Resumo:
Short QT syndrome (SQTS) is a genetically determined ion-channel disorder, which may cause malignant tachyarrhythmias and sudden cardiac death. Thus far, mutations in five different genes encoding potassium and calcium channel subunits have been reported. We present, for the first time, a novel loss-of-function mutation coding for an L-type calcium channel subunit.
Resumo:
Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion.
Resumo:
Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835 healthy individuals and 60 individuals with reduced telomerase activity. Healthy individuals showed a broad range in average telomere length in granulocytes and lymphocytes at any given age. The average telomere length declined with age at a rate that differed between age-specific breakpoints and between cell types. Gender differences between leukocyte telomere lengths were observed for all cell subsets studied; interestingly, this trend could already be detected at birth. Heterozygous carriers for mutations in either the telomerase reverse transcriptase (hTERT) or the telomerase RNA template (hTERC) gene displayed striking and comparable telomere length deficits. Further, non-carrier relatives of such heterozygous individuals had somewhat shorter leukocyte telomere lengths than expected; this difference was most profound for granulocytes. Failure to maintain telomere homeostasis as a result of partial telomerase deficiency is thought to trigger cell senescence or cell death, eventually causing tissue failure syndromes. Our data are consistent with these statements and suggest that the likelihood of similar processes occurring in normal individuals increases with age. Our work highlights the essential role of telomerase in the hematopoietic system and supports the notion that telomerase levels in hematopoietic cells, while limiting and unable to prevent overall telomere shortening, are nevertheless crucial to maintain telomere homeostasis with age.
Resumo:
BACKGROUND: Variation in the ABCB1 gene is believed to play a role in drug resistance in epilepsy. HYPOTHESIS/OBJECTIVES: Variation in the ABCB1 gene encoding the permeability-glycoprotein could have an influence on phenobarbital (PB) resistance, which occurs with high frequency in idiopathic epileptic Border Collies (BCs). Animals: Two hundred and thirty-six client-owned BCs from Switzerland and Germany including 25 with idiopathic epilepsy, of which 13 were resistant to PB treatment. METHODS: Prospective and retrospective case-control study. Data were collected retrospectively regarding disease status, antiepileptic drug (AED) therapy, and drug responsiveness. The frequency of a known mutation in the ABCB1 gene (4 base-pair deletion in the ABCB1 gene [c.296_299del]) was determined in all BCs. Additionally, the ABCB1 coding exons and flanking sequences were completely sequenced to search for additional variation in 41 BCs. Association analyses were performed in 2 case-control studies: idiopathic epileptic and control BCs and PB-responsive and resistant idiopathic epileptic BCs. RESULTS: One of 236 BCs (0.4%) was heterozygous for the mutation in the ABCB1 gene (c.296_299del). A total of 23 variations were identified in the ABCB1 gene: 4 in exons and 19 in introns. The G-allele of the c.-6-180T > G variation in intron 1 was significantly more frequent in epileptic BCs resistant to PB treatment than in epileptic BCs responsive to PB treatment (P(raw) = .0025). CONCLUSIONS AND CLINICAL IMPORTANCE: A variation in intron 1 of the ABCB1 gene is associated with drug responsiveness in BCs. This might indicate that regulatory mutations affecting the expression level of ABCB1 could exist, which may influence the reaction of a dog to AEDs.