989 resultados para faunal diversity
Resumo:
This work aims to analyze the perceptions of students enrolled in the Master's Degree in Secondary Education Teaching, Training and Language Teaching at the University of Jaen, about the initial training received on attention to diversity. A descriptive methodology has been followed using an ad hoc questionnaire as data collection instrument. The results show favorable attitudes of future secondary teachers for diversity, having received an adequate training in curricular and organizational aspects, making it able to fully achieve inclusion of students with special educational needs in the classroom.
Resumo:
A spectrally efficient strategy is proposed for cooperative multiple access (CMA) channels in a centralized communication environment with $N$ users. By applying superposition coding, each user will transmit a mixture containing its own information as well as the other users', which means that each user shares parts of its power with the others. The use of superposition coding in cooperative networks was first proposed in , which will be generalized to a multiple-user scenario in this paper. Since the proposed CMA system can be seen as a precoded point-to-point multiple-antenna system, its performance can be best evaluated using the diversity-multiplexing tradeoff. By carefully categorizing the outage events, the diversity-multiplexing tradeoff can be obtained, which shows that the proposed cooperative strategy can achieve larger diversity/multiplexing gain than the compared transmission schemes at any diversity/multiplexing gain. Furthermore, it is demonstrated that the proposed strategy can achieve optimal tradeoff for multiplexing gains $0leq r leq 1$ whereas the compared cooperative scheme is only optimal for $0leq r leq ({1}/{N})$. As discussed in the paper, such superiority of the proposed CMA system is due to the fact that the relaying transmission does not consume extra channel use and, hence, the deteriorating effect of cooperative communication on the data rate is effectively limited.
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
Sargassum muticum is an invasive brown macroalga that originates from Japan. In the introduced range, thalli can grow in soft substratum habitats attached to embedded rock fragments and shells, Within Strangford Lough, Northern Ireland, S. muticum has rapidly colonised large areas of soft substrata, where dispersal by peripatetic or 'stone-walking' plants is very effective. Sediment cores were collected under and outside canopies of S. muticum in Strangford Lough (S. muticum first recorded there in 1995) and Langstone Harbour, English Channel (S. muticum first found there in 1974) to investigate modification of the infaunal assemblages. At both study sites, community analyses highlighted significant differences between the assemblages under the canopies and those in adjacent unvegetated areas. In Strangford Lough, the invertebrate community under the canopy contained a higher abundance of smaller, opportunistic, r-selected species than outside the canopy. By contrast, the communities under and outside the canopy at Langstone Harbour were similar in species composition, diversity and dominance, but overall faunal abundance was greater under the canopy. Sediment characteristics were not affected by S. muticum canopies, but the infaunal changes may be related to environmental modification; shading, flow suppression and temperature stratification were also investigated. The differences between these 2 sites indicate that localised conditions and/or the duration of colonisation of S. muticum are important in determining the nature of habitat modification.
Resumo:
In arid regions, biodiversity and biomass are limited by water availability, and this problem has been compounded by desertification associated with global climate change. The saprotrophic macrofungi that are indigenous to hot subtropical and tropical regions, such as Pleurotus spp., can play key roles in water sequestration, nutrient cycling, human nutrition, and bioremediation of waste materials. We studied 15 strains of Pleurotus sajor-caju, a widespread and phenotypically-diverse species, to establish variability in growth response and primordium development over a range of stress parameters: osmotic potential (-0.5 to -5 MPa), temperature (5-40 degrees C) and pH (2-12). The initiation of primordia precedes basidiome production and therefore represents a key stage in bioremediation strategies and fungi-driven nutrient cycles. Primordia were produced at low pH (4-6), at suboptimal growth temperatures (<or =25 degrees C), and under moderate water stress (-0.5 to -3.5 MPa). Although the growth windows for different strains were similar, their maximum growth rates and the optimum conditions for growth varied. We discuss the phenotypic diversity of Pleurotus strains and discuss their potential for cultivation, bioremediation and ecological regeneration.