862 resultados para estudiante adulto


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo es parte de una investigación que estudia prácticas de modelación en diversos escenarios con la intención de analizar las herramientas que surgen en este proceso. Se reportan experiencias con estudiantes, de nivel medio superior y superior de México y Chile, respectivamente, que participaron en puestas en escena de un diseño de aprendizaje basado en la modelación lineal. Sus producciones muestran argumentos, herramientas y procedimientos que utilizan al modelar, su análisis presenta invariantes y particularidades que exhiben el rol del estudiante en cada escenario. El trabajo se enmarca en la socioepistemología como perspectiva teórica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El discurso escolar del contenido de programación lineal, en los establecimientos educacionales chilenos, se ha convertido en un proceso mecánico y sin sentido para el estudiante. Para revertir esta mirada, se intenta dar respuesta a la siguiente interrogante ¿Cuáles son los significados reales que emergen y dan fuerza a la programación lineal? Se evidenciará el estudio del rol actual de la programación lineal y los procesos históricos de su surgimiento, con el fin de identificar aquellos factores que le dan fuerza a su desarrollo y construcción.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La calculadora graficadora como herramienta tecnológica ofrece la posibilidad de despertar el interés del estudiante y estimular su entendimiento, y en este trabajo se analiza la puesta en escena de una situación didáctica como nota de clase (Lluck, 2004). Conformada con una secuencia de actividades para ser trabajadas por los alumnos dentro y fuera del aula. Esta secuencia se diseña de tal forma que al ponerla en práctica es posible hacer matemáticas, considerando que dichos saberes matemáticos son necesarios para ser un ciudadano que se desempeñe con éxito en su labor y comprenda la importancia de la matemática en su vida actual y futura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es urgente tratar los contenidos matemáticos de forma que docentes y estudiantes sientan la necesidad de aprender matemáticas para poder dar solución a los múltiples problemas que a nivel mundial plantean servicios tales como salud, distribución, energía, conservación del agua, etc, así como la industria moderna; en calidad, competitividad y automatización. Corresponde a los matemáticos educativos demostrar que es necesario ampliar el horizonte teórico para dar solución a problemas complejos y hacer uso de modernas técnicas computacionales para realizar los cálculos. La idea es a partir de la necesidad, buscar el respaldo técnico y teórico que permitan cumplir el objetivo de dar solución al problema. De esta forma el objetivo del estudiante lo motiva a aprender.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En los últimos años hemos sido partícipes de un explosivo desarrollo tecnológico; esto ha puesto en duda muchas de las prácticas docentes en los cursos de matemáticas. El advenimiento de la computadora con programas de manipulación simbólica, de graficación y simulación, hacen que muchas de las tareas usuales de un curso de cálculo, como derivar e integrar simbólicamente, se puedan resolver mediante la aplicación de estos paquetes. Esto cuestiona gravemente el rol del profesor y lleva ineludiblemente a una revisión curricular en donde se deben examinar los objetivos de los cursos de cálculo y determinar con precisión el contrato didáctico entre los participantes que son: el profesor, la tecnología y el estudiante. Cada propuesta presenta ventajas y desventajas en su uso, evidenciarlo es el objetivo del presente trabajo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los obstáculos para operar con la visualización por parte de los estudiantes, a la hora de estudiar lo que varía, muestran la importancia de promover el desarrollo de una “inteligencia visual”. En especial la construcción de gráficas, dado que es una importante herramienta que permite a los estudiantes realizar una actividad matemática escolar y por tanto desarrollar un pensamiento matemático. Herramienta didáctica que ha ido, desde el surgimiento de la tecnología digital, cobrando mayor importancia en la investigación tanto matemática como en didáctica de las matemáticas. A modo de ilustración en el comportamiento tendencial (Cordero, 2001) de las funciones, un estudiante aprende a “identificar” coeficientes en la función, a “reconocer” patrones de comportamientos gráficos, a “buscar” tendencias en los comportamientos y a "relacionar” funciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interesa a este estudio detectar modos de razonamiento matemático propiciados en los alumnos desde las prácticas docentes de los profesores. Se pretende hacer un estudio de casos en donde se identifiquen estos razonamientos. Algunas de las preguntas guía de este estudio son: ¿Qué relación hay entre los propósitos de la asignatura con el perfil de egreso de la educación media superior? ¿De que manera influye la formación del profesor en su práctica docente y que modos de razonamiento desarrolla dentro de esta? ¿Qué es lo que busca el profesor en la bibliografía y qué fuentes consulta y dónde las consulta? ¿Cuál es la dinámica ambiental dentro del aula? ¿qué tipo de actitudes se generan en el aula? ¿se favorecen sujetos críticos y reflexivos, con la posibilidad de expresarse y de preguntarse? ¿Qué tipo de actitudes muestran los alumnos? bajo la perspectiva de los modos de pensamiento analizados por Sierpinska, quien maneja los modos geométrico–sintético, analíticoaritmético y analítico-estructural. Frente a los altos índices de reprobación de los alumnos de Bachillerato General en la asignatura de Álgebra, surge el desafío para los docentes de reemplazar la memorización por una comprensión más profunda. Lo que se pretende es que las matemáticas sean, para el estudiante, herramientas funcionales y flexibles que le permitan resolver las situaciones problemáticas que se le planteen, en diversos ámbitos. A la perspectiva técnica se opone la perspectiva práctica, a los dos puntos de vistas mencionados se agrega un nuevo enfoque: estratégico, donde las actividades educativas están históricamente localizadas, las cuales tienen un lugar, sobre un trasfondo socio histórico y proyectan una visión de la clase de futuro que deseamos construir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Programa ‘Paquetes Didácticos para los cursos de Matemáticas’ de la Academia Institucional de Matemáticas del Nivel Medio Superior (AIM-NMS-IPN) en colaboración con la Dirección de Tecnología Educativa del Instituto Politécnico Nacional, desarrollaron el Paquete Didáctico de Álgebra para el Nivel Medio Superior que consiste en un libro y un disco compacto con software especializado. El paquete didáctico tiene como propósito dotar al profesor y al estudiante de materiales de calidad, elaborados usando el conocimiento generado por las investigaciones, es un conjunto de materiales que concretan operativamente los cuatro organizadores del currículo: objetivos, contenidos, metodología y evaluación. En particular, las estrategias didácticas y metodológicas, los conocimientos matemáticos y los elementos teóricos para ampliar la cultura matemática de los estudiantes. Estos materiales pretenden apoyar las clases presenciales con materiales innovadores que permitan lograr aprendizaje significativo en los alumnos que cursan esta materia. En este trabajo se presenta un informe de los resultados del cuestionario de opinión aplicado a los alumnos de los grupos piloto con el objetivo de conocer sus impresiones al utilizar este tipo de materiales, así como las mejoras que propongan, todo esto para lograr que el Paquete Didáctico responda realmente a las necesidades de los alumnos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uno de los desafíos esenciales de la enseñanza de las matemáticas consiste en la utilización de métodos y medios de enseñanza que propicien en los alumnos la formación de un conocimiento científico. Se asume como referente teórico los métodos del conocimiento científico de las ciencias pedagógicas, teniendo en cuenta que cuando el conocimiento que se quiere formar es científico, tiene que crear una actividad cognoscitiva nueva, lo que hace que la enseñanza y los medios de enseñanza que utilicemos sean diferentes, particularmente por el lenguaje que tiene la matemática, que ha de ser el lenguaje científico donde, además del habitual, se da el simbólico. El objetivo del trabajo es fundamentar la utilización de las calculadoras gráficas como un medio muy importante y actual para lograr formar en los alumnos un conocimiento científico de las matemáticas, y precisar que no basta con la enseñanza expositiva para que el estudiante se forme un conocimiento científico, pues la actitud científica hay que formarla, educarla en los estudiantes. Se caracterizan los niveles del conocimiento científico de las matemáticas, el empírico y el teórico y se precisa que ambos niveles se distinguen por los métodos de enseñanza y aprendizaje, donde el empírico emplea métodos que permiten describir los hechos, y es por eso que para este nivel se recomienda la visualización con la utilización de las calculadoras gráficas, y el nivel teórico utiliza métodos para distinguir las esencias, por ejemplo el hipotético-deductivo, el lógico histórico, la ascensión de lo abstracto a lo concreto pensado, etc. El trabajo aporta como resultado los principios para la utilización de las calculadoras gráficas en las clases de matemáticas en aras de formar un conocimiento científico en la enseñanza de esta materia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el proceso del enseñanza y aprendizaje de las matemáticas entre el docente y el estudiante, existe una relación básica e importante, es el lenguaje, por ello ya existen diversas técnicas de cómo hablarles a los educandos, pero ¿qué pasa cuando los estudiantes son sordos?, con la nueva ley de inclusión no existe ni la posibilidad de no aceptarlos o rehusar el cargo, entonces surge el reto de cómo enfrentar lo mejor posible dicho proceso. Esta comunicación trata de mostrar la experiencia de como un profesor sin ser capacitado para tal situación, buscando alternativas para sus clases con población sorda, en grados Decimo y Undécimo de la I.E. Camacho Carreño, de la ciudad de Bucaramanga.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.