994 resultados para emission trading
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The InAs quantum dots (QDs) on an AlAs layer are grown on GaAs substrates by molecular beam epitaxy technique. The properties of materials and optics of such QD structures have been investigated by cross sectional transmission electron microscopy and photoluminescence (PL) techniques. It is discovered that the inhomogeneous strain filed mainly exists below InAs QDs layers in the case of no wetting layer. The full width at half maximums (FWHMs) and intensities of PL emission peaks of InAs QDs are found to be closely related to the thickness of the thin AlAs layers. The InAs QDs on an eight monolayer AlAs layer, with wide FWHMs and large integral intensity of PL emission peaks, are favorable for producing broadband QD superluminescent diodes, external-cavity QD laser with large tuning range.
Resumo:
Without introducing concentration quenching phenomenon, a few wt% of Tb3+ and Yb3+ ions were doped into a group of easily-fiberized tellurite glasses characterized by loose polyhedron structures and rich interstitial positions. Intense green upconversion emission from Tb3+ ions centered at 539 nm due to transition 5D4→7F5 was observed by direct excitation of Yb3+ ions with a laser diode at 976 nm. Optimizing the concentration ratio of Tb3+/Yb3+, a tellurite glass with composition of 80TeO2-10ZnO-10Na2O (mol%)+1.0wt% Tb2O3+3.0wt% Yb2O3 was found to present the highest green light intensity and therefore is especially suitable for efficient green fiber laser development.
Resumo:
A series of Nd3+-doped LaF3 nanoparticles with Nd3+ concentrations from 0.5 to 10 mol% were synthesized. The fluorescence intensity and lifetime of the nanoparticles at various Nd3+ doping concentration were investigated. The nanoparticles displayed strongest fluorescence intensity at 3 mol% Nd3+ concentration. Eighty-eight percentage quantum efficiency was obtained when the Nd3+ concentration was 0.5 mol%. Optical properties of nanoparticles were studied according to Judd-Ofelt theory. A larger emission cross-section, sigma(em), for F-4(3/2) -> I-4(11/2) transition of the Nd3+ ion was obtained as 3.21 x 10(-20) cm(2), which was two times of the currently reported value. The larger emission cross-section and strong fluorescence intensity demonstrate that these nanoparticles are promising materials for laser applications. (C) 2010 Published by Elsevier B. V.