851 resultados para ecological succession
Resumo:
Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature.
Resumo:
Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies.
Resumo:
Several theories assume that successful team coordination is partly based on knowledge that helps anticipating individual contributions necessary in a situational task. It has been argued that a more ecological perspective needs to be considered in contexts evolving dynamically and unpredictably. In football, defensive plays are usually coordinated according to strategic concepts spanning all members and large areas of the playfield. On the other hand, fewer people are involved in offensive plays as these are less projectable and strongly constrained by ecological characteristics. The aim of this study is to test the effects of ecological constraints and player knowledge on decision making in offensive game scenarios. It is hypothesized that both knowledge about team members and situational constraints will influence decisional processes. Effects of situational constraints are expected to be of higher magnitude. Two teams playing in the fourth league of the Swiss Football Federation participate in the study. Forty customized game scenarios were developed based on the coaches’ information about player positions and game strategies. Each player was shown in ball possession four times. Participants were asked to take the perspective of the player on the ball and to choose a passing destination and a recipient. Participants then rated domain specific strengths (e.g., technical skills, game intelligence) of each of their teammates. Multilevel models for categorical dependent variables (team members) will be specified. Player knowledge (rated skills) and ecological constraints (operationalized as each players’ proximity and availability for ball reception) are included as predictor variables. Data are currently being collected. Results will yield effects of parameters that are stable across situations as well as of variable parameters that are bound to situational context. These will enable insight into the degree to which ecological constraints and more enduring team knowledge are involved in decisional processes aimed at coordinating interpersonal action.
Resumo:
Aims: Species diversity and genetic diversity may be affected in parallel by similar environmental drivers. However, genetic diversity may also be affected independently by habitat characteristics. We aim at disentangling relationships between genetic diversity, species diversity and habitat characteristics of woody species in subtropical forest. Methods: We studied 11 dominant tree and shrub species in 27 plots in Gutianshan, China, and assessed their genetic diversity (Ar) and population differentiation (F’ST) with microsatellite markers. We tested if Ar and population specific F’ST were correlated to local species diversity and plot characteristics. Multi-model inference and model averaging were used to determine the relative importance of each predictor. Additionally we tested for isolation-by-distance and isolation-by-elevation by regressing pairwise F’ST against pairwise spatial and elevational distances. Important findings: Genetic diversity was not related to species diversity for any of the study species. Thus, our results do not support joint effects of habitat characteristics on these two levels of biodiversity. Instead, genetic diversity in two understory shrubs, Rhododendron simsii and Vaccinium carlesii, was affected by plot age with decreasing genetic diversity in successionally older plots. Population differentiation increased with plot age in Rhododendron simsii and Lithocarpus glaber. This shows that succession can reduce genetic diversity within, and increase genetic diversity between populations. Furthermore, we found four cases of isolation-by-distance and two cases of isolation-by-elevation. The former indicates inefficient pollen and seed dispersal by animals whereas the latter might be due to phenological asynchronies. These patterns indicate that succession can affect genetic diversity without parallel effects on species diversity and that gene flow in a continuous subtropical forest can be restricted even at a local scale.
Resumo:
The sustainability of regional development can be usefully explored through several different lenses. In situations in which uncertainties and change are key features of the ecological landscape and social organization, critical factors for sustainability are resilience, the capacity to cope and adapt, and the conservation of sources of innovation and renewal. However, interventions in social-ecological systems with the aim of altering resilience immediately confront issues of governance. Who decides what should be made resilient to what? For whom is resilience to be managed, and for what purpose? In this paper we draw on the insights from a diverse set of case studies from around the world in which members of the Resilience Alliance have observed or engaged with sustainability problems at regional scales. Our central question is: How do certain attributes of governance function in society to enhance the capacity to manage resilience? Three specific propositions were explored: ( 1) participation builds trust, and deliberation leads to the shared understanding needed to mobilize and self-organize; ( 2) polycentric and multilayered institutions improve the fit between knowledge, action, and social-ecological contexts in ways that allow societies to respond more adaptively at appropriate levels; and ( 3) accountable authorities that also pursue just distributions of benefits and involuntary risks enhance the adaptive capacity of vulnerable groups and society as a whole. Some support was found for parts of all three propositions. In exploring the sustainability of regional social-ecological systems, we are usually faced with a set of ecosystem goods and services that interact with a collection of users with different technologies, interests, and levels of power. In this situation in our roles as analysts, facilitators, change agents, or stakeholders, we not only need to ask: The resilience of what, to what? We must also ask: For whom?
Resumo:
This paper considers ocean fisheries as complex adaptive systems and addresses the question of how human institutions might be best matched to their structure and function. Ocean ecosystems operate at multiple scales, but the management of fisheries tends to be aimed at a single species considered at a single broad scale. The paper argues that this mismatch of ecological and management scale makes it difficult to address the fine-scale aspects of ocean ecosystems, and leads to fishing rights and strategies that tend to erode the underlying structure of populations and the system itself. A successful transition to ecosystem-based management will require institutions better able to economize on the acquisition of feedback about the impact of human activities. This is likely to be achieved by multiscale institutions whose organization mirrors the spatial organization of the ecosystem and whose communications occur through a polycentric network. Better feedback will allow the exploration of fine-scale science and the employment of fine-scale fishing restraints, better adapted to the behavior of fish and habitat. The scale and scope of individual fishing rights also needs to be congruent with the spatial structure of the ecosystem. Place-based rights can be expected to create a longer private planning horizon as well as stronger incentives for the private and public acquisition of system relevant knowledge.
Resumo:
The growth patterns of weight from birth through the first twelve months of life among rural Taiwanese infants were investigated with the following objectives: (i) compare each of the parameters of the Count model estimated for infants who were nutritionally at risk with those for a reference population from the United States; and (ii) within the Taiwanese infants, account for the variance in the growth patterns in the first and second six months of life on the basis of selected ecological factors.^ The significance between group differences were observed in the patterns of the weight growth in both linear growth and in the timing and the direction of velocity changes. A significant decline in growth velocity was observed among Taiwanese infants at about the fourth month of life. The decline is in keeping with a recent proposal made by J. C. Waterlow regarding the timing of change in growth velocity among nutritionally at risk populations in developing countries. The growth course of a nutritionally at risk infant during the first three months is apparently protected by the nurturance of the mother and innate biological properties of the infant.^ A highly significant portion of the growth variance in the second six months of life was accounted for by exogenous factors and biological factors related to the infant. Conversely, none of the growth variance in the first six months of life was accounted for by predictor variables. The most potent determinant of growth in the second six months of life was seasonality which represents a multiple environmental event.^ The model parameters estimated from the Count model represent different aspect of physical growth; yet the correlation coefficients between parameters b and c are high (r > .80). Clearly, the biological interpretation of the model parameters requires analysis of the whole function in the specific context of a given age period. ^
Resumo:
In developing countries, infection and malnutrition, and their interaction effects, account for the majority of childhood deaths and chronic deficits in growth and development. To promote child health, the causal determinants of infection and malnutrition and cost-effective interventions must be identified. To this end, medical examinations of 988 children (age two weeks to 14 years) living at three altitudes (coastal < 300m; sierra (TURN) 3,000m; and altiplano > 4,000m) in Chile's northermost Department of Arica revealed that 393 (40%) of the youngsters harbored one or more infections. When sorted by region and ethnicity, indigenous children of the highlands had infection rates 50% higher than children of Spanish descent living near the coast.^ An ecological model was developed and used to examine the causal path of infection and measure the effect of single and combined environmental variables. Family variables significantly linked to child health included maternal health, age and education. Significant child determinants of infection included the child's nutrient intake and medical history. When compared to children well and free of disease, infected youngsters reported a higher incidence of recent illness and a lower intake of basic foodstuffs. Traditional measures of child health, e.g. birth condition, weaning history, maternal fertility, and family wealth, did not differentiate between well and infected children.^ When height, weight, arm circumference, and subcapular skinfold measurements were compared, infected children, regardless of age, had smaller arm circumferences, the statistical difference being the greatest for males, age nine to eleven. Height and weight, the traditional growth indices, did not differentiate between well and infected groups.^ Infection is not determined by a single environmental factor or even a series of variables. Child health is ecological in nature and cannot be improved independent of changes in the environment that surrounds the child. To focus on selected child health needs, such as feeding programs or immunization campaigns, without simultaneously attending to the environment from which the needs arose is an inappropriate use of time, personnel, and money. ^
Resumo:
Succession was already studied over decades. The present thesis investigated the succession on hard substrate at two different study sites within the fjord Comau, Chile. Nine plates were installed at both sites (mouth of fjord and inner fjord) and photographed over three years. Additionally the natural community was recorded and a ground truthing was carried out to verify the analyzed species. Respectively at both sites over 50 different species were identified. Abundance data decreased with only one exception continuously, whereas the percentage cover increased. But the communities on the recruitment plates do still not reach the community structure of the natural environment. The present data showed that the hard-bottom succession in the fjord Comau is best described by the TOLERANCE MODEL (Connell & Slatyer, 1977). An important species of the natural community is the stony coral Desmophyllum dianthus, which normally (outside the fjord) grows beneath 1000 m water depth. The results of this work indicate that the mature community is not reached after 36 months.
Resumo:
Site 549 recovered a Lower Cretaceous succession which has been shown to include parts of the Barremian and Albian stages. Forty-four species of Ostracoda are illustrated and their stratigraphic distribution used to recognise three major facies units. An high diversity inner shelf facies earlier in the Barremian gives way to a low diversity, outer shelf facies, higher in the succession. The early Albian appears to indicate a return to an inner shelf fauna. The faunas recovered have been compared to similar faunas elsewhere in N. W. Europe.