797 resultados para countermovement jump
Resumo:
This paper is devoted to modeling elastic behavior of laminated composite shells, with special emphasis on incorporating interfacial imperfection. The conditions of imposing traction continuity and displacement jump across each interface are used to model imperfect interfaces. Vanishing transverse shear stresses on two free surfaces of a shell eliminate the need for shear correction factors. A linear theory underlying elastostatics and kinetics of laminated composite shells in a general configuration is presented from Hamilton's principle. In the special case of vanishing interfacial parameters, this theory reduces to the conventional third-order zigzag theory for perfectly bonded laminated shells. Numerical results for bending and vibration problems of laminated circular cylindrical panels are tabulated and plotted to indicate the influence of the interfacial imperfection. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The thesis describes experimental work on the possibility of using deflection baffles in conventional distillation trays as flow straightening devices, with the view of enhancing tray efficiency. The mode of operation is based on deflecting part of the liquid momentum from the centre of the tray to the segment regions in order to drive stagnating liquid at the edges forward. The first part of the work was a detailed investigation into the two-phase flow patterns produced on a conventional sieve tray having 1 mm hole size perforations. The data provide a check on some earlier work and extend the range of the existing databank, particularly to conditions more typical of industrial operation. A critical survey of data collected on trays with different hole sizes (Hine, 1990; Chambers, 1993; Fenwick, 1996; this work) showed that the hole diameter has a significant influence on the flow regime, the size of the stagnant regions and the hydraulic and mass transfer performance. Five modified tray topologies were created with different configurations of baffles and tested extensively in the 2.44 m diameter air-water pilot distillation simulator for their efficacy in achieving uniform flow across the tray and for their impact on tray loading capacity and mass transfer efficiency. Special attention was given to the calibration of the over 100 temperature probes used in measuring the water temperature across the tray on which the heat and mass transfer analogy is based. In addition to normal tray capacity experiments, higher weir load experiments were conducted using a 'half-tray' mode in order to extend the range of data to conditions more typical of industrial operation. The modified trays show superior flow characteristics compared to the conventional tray in terms of the ability to replenish the zones of exceptionally low temperatures and high residence times at the edges of the tray, to lower the bulk liquid gradient and to achieve a more uniform flow across the tray. These superior flow abilities, however, tend to diminish with increasing weir load because of the increasing tendency for the liquid to jump over the barriers instead of flowing over them. The modified tray topologies showed no tendency to cause undue limitation to tray loading capacity. Although the improvement in the efficiency of a single tray over that of the conventional tray was moderate and in some cases marginal, the multiplier effect in a multiple tray column situation would be significant (Porter et al., 1972). These results are in good agreement with an associated CFD studies (Fischer, 1999) carried out by partners in the Advanced Studies in Distillation consortium. It is concluded that deflection baffles can be used in a conventional distillation sieve tray to achieve better liquid flow distribution and obtain enhanced mass transfer efficiency, without undermining the tray loading capacity. Unlike any other controlled-flow tray whose mechanical complexity impose stringent manufacturing and installation tolerances, the baffled-tray models are simple to design, manufacture and install and thus provide an economic method of retrofitting badly performing sieve trays both in terms of downtime and fabrication. NOTE APPENDICES 2-5 ARE ON A SEPARATE FLOPPY DISK ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
A Jeffcott rotor consists of a disc at the centre of an axle supported at its end by bearings. A bolted Jeffcott rotor is formed by two discs, each with a shaft on one side. The discs are held together by spring loaded bolts near the outer edge. When the rotor turns there is tendency for the discs to separate on one side. This effect is more marked if the rotor is unbalanced, especially at resonance speeds. The equations of motion of the system have been developed with four degrees of freedom to include the rotor and bearing movements in the respective axes. These equations which include non-linear terms caused by the rotor opening, are subjected to external force such from rotor imbalance. A simulation model based on these equations was created using SIMULINK. An experimental test rig was used to characterise the dynamic features. Rotor discs open at a lateral displacement of the rotor of 0.8 mm. This is the threshold value used to show the change of stiffness from high stiffness to low stiffness. The experimental results, which measure the vibration amplitude of the rotor, show the dynamic behaviour of the bolted rotor due to imbalance. Close agreement of the experimental and theoretical results from time histories, waterfall plots, pseudo-phase plots and rotor orbit plot, indicated the validity of the model and existence of the non-linear jump phenomenon.
Resumo:
Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.
Resumo:
Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.
Resumo:
We examine contemporaneous jumps (cojumps) among individual stocks and a proxy for the market portfolio. We show, through a Monte Carlo study, that using intraday jump tests and a coexceedance criterion to detect cojumps has a power similar to the cojump test proposed by Bollerslev et al. (2008). However, we also show that we should not expect to detect all common jumps comprising a cojump when using such coexceedance based detection methods. Empirically, we provide evidence of an association between jumps in the market portfolio and cojumps in the underlying stocks. Consistent with our Monte Carlo evidence, moderate numbers of stocks are often detected to be involved in these (systematic) cojumps. Importantly, the results suggest that market-level news is able to generate simultaneous large jumps in individual stocks. We also find evidence of an association between systematic cojumps and Federal Funds Target Rate announcements. © 2013 Elsevier B.V.
Resumo:
Single crystal Mo3Si specimens were grown and tested at room temperature using established nanoindentation techniques at various crystallographic orientations. The indentation modulus and hardness were obtained for loads that were large enough to determine bulk properties, yet small enough to avoid cracking in the specimens. From the indentation modulus results, anisotropic elastic constants were determined. As load was initially increased to approximately 1.5 mN, the hardness exhibited a sudden drop that corresponded to a jump in displacement. The resolved shear stress that was determined from initial yielding was 10-15% of the shear modulus, but 3 to 4 times the value obtained from the bulk hardness. Non-contact atomic force microscopy images in the vicinity of indents revealed features consistent with {100}(010) slip.
Resumo:
We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.
Resumo:
ACM Computing Classification System (1998): G.1.2.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
In this dissertation, I investigate three related topics on asset pricing: the consumption-based asset pricing under long-run risks and fat tails, the pricing of VIX (CBOE Volatility Index) options and the market price of risk embedded in stock returns and stock options. These three topics are fully explored in Chapter II through IV. Chapter V summarizes the main conclusions. In Chapter II, I explore the effects of fat tails on the equilibrium implications of the long run risks model of asset pricing by introducing innovations with dampened power law to consumption and dividends growth processes. I estimate the structural parameters of the proposed model by maximum likelihood. I find that the stochastic volatility model with fat tails can, without resorting to high risk aversion, generate implied risk premium, expected risk free rate and their volatilities comparable to the magnitudes observed in data. In Chapter III, I examine the pricing performance of VIX option models. The contention that simpler-is-better is supported by the empirical evidence using actual VIX option market data. I find that no model has small pricing errors over the entire range of strike prices and times to expiration. In general, Whaley’s Black-like option model produces the best overall results, supporting the simpler-is-better contention. However, the Whaley model does under/overprice out-of-the-money call/put VIX options, which is contrary to the behavior of stock index option pricing models. In Chapter IV, I explore risk pricing through a model of time-changed Lvy processes based on the joint evidence from individual stock options and underlying stocks. I specify a pricing kernel that prices idiosyncratic and systematic risks. This approach to examining risk premia on stocks deviates from existing studies. The empirical results show that the market pays positive premia for idiosyncratic and market jump-diffusion risk, and idiosyncratic volatility risk. However, there is no consensus on the premium for market volatility risk. It can be positive or negative. The positive premium on idiosyncratic risk runs contrary to the implications of traditional capital asset pricing theory.
Resumo:
World War II profoundly impacted Florida. The military geography of the State is essential to an understanding the war. The geostrategic concerns of place and space determined that Florida would become a statewide military base. Florida's attributes of place such as climate and topography determined its use as a military academy hosting over two million soldiers, nearly 15 percent of the GI Army, the largest force the US ever raised. One-in-eight Floridians went into uniform. Equally, Florida's space on the planet made it central for both defensive and offensive strategies. The Second World War was a war of movement, and Florida was a major jump off point for US force projection world-wide, especially of air power. Florida's demography facilitated its use as a base camp for the assembly and engagement of this military power. In 1940, less than two percent of the US population lived in Florida, a quiet, barely populated backwater of the United States. But owing to its critical place and space, over the next few years it became a 65,000 square mile training ground, supply dump, and embarkation site vital to the US war effort. Because of its place astride some of the most important sea lanes in the Atlantic World, Florida was the scene of one of the few Western Hemisphere battles of the war. The militarization of Florida began long before Pearl Harbor. The pre-war buildup conformed to the US strategy of the war. The strategy of theUS was then (and remains today) one of forward defense: harden the frontier, then take the battle to the enemy, rather than fight them in North America. The policy of "Europe First," focused the main US war effort on the defeat of Hitler's Germany, evaluated to be the most dangerous enemy. In Florida were established the military forces requiring the longest time to develop, and most needed to defeat the Axis. Those were a naval aviation force for sea-borne hostilities, a heavy bombing force for reducing enemy industrial states, and an aerial logistics train for overseas supply of expeditionary campaigns. The unique Florida coastline made possible the seaborne invasion training demanded for US victory. The civilian population was employed assembling mass-produced first-generation container ships, while Floridahosted casualties, Prisoners-of-War, and transient personnel moving between the Atlantic and Pacific. By the end of hostilities and the lifting of Unlimited Emergency, officially on December 31, 1946, Floridahad become a transportation nexus. Florida accommodated a return of demobilized soldiers, a migration of displaced persons, and evolved into a modern veterans' colonia. It was instrumental in fashioning the modern US military, while remaining a center of the active National Defense establishment. Those are the themes of this work.
Resumo:
This piece illustrates that comparing the political and economic impact of Hugo Chavez and Mahmoud Ahmadinejad on their respective countries based solely on generalizations regarding similarities in foreign policy discourse is an unwarranted analytical jump. To identify the essential difference between the two administrations, the article pays attention to the different domestic politics in each country. Ahmadinejad’s populism seems to fit best within neoliberal populism. In stark contrast, Chavista socialism can be understood as a “heterodox” or “alternative” economic policy.
Resumo:
Bob del Toro, Dianne Haley and Others with Toys for Managuan Relief. On December 23, 12:29 a.m. local time in Managua, Nicaragua, a magnitude 6.2 earthquake occurred. The earth caused widespread damage among Managua, the capital city. In Managua, 5,000 residents were killed, 20,000 were injured and over 250,000 were left homeless. In Miami, residents and relief organizations focused on helping children. Wife of General Arturo Somoza pleaded on efforts on gathering sporting goods and toys for Managua’s young people. Relief committees purchased 230 dozen balls – basketball, rubber, and volley, soccer, and others. Nearly $500 came from students in Hialeah High School. Jump ropes and jacks were donated from a sorority at Florida International University. Arrangements were made to bring 44,000 pounds of baby formula and canned meat and 13,000 pounds of medicine. Many of Miami’s corporations, associations, and residents contributed to the Managuan Relief effort. Source: The Miami News, March 19, 1973 by Lynn Feigenbaum 887-3400. april 30, 1973. Cutlines: More than 350 dozens of various balls, skate boards and games were recently purchased by the Student Governance Committee of Florida International University for the young people of Managua, Nicaragua who not only do not have enough toys but are unable to attend schools which are closed. Left to right are, Bob del Toro, Dianne Haley, Chairman of the Student Governance Committee, Hialeah Councilman Jack Weaver of the Hialeah-Managua Sister City Committee, Barbara O'Nan and Margaret Klein.
Resumo:
On December 23, 12:29 a.m. local time in Managua, Nicaragua, a magnitude 6.2 earthquake occurred. The earth caused widespread damage among Managua, the capital city. In Managua, 5,000 residents were killed, 20,000 were injured and over 250,000 were left homeless. In Miami, residents and relief organizations focused on helping children. Wife of General Arturo Somoza pleaded on efforts on gathering sporting goods and toys for Managua’s young people. Relief committees purchased 230 dozen balls – basketball, rubber, and volley, soccer, and others. Nearly $500 came from students in Hialeah High School. Jump ropes and jacks were donated from a sorority at Florida International University. Arrangements were made to bring 44,000 pounds of baby formula and canned meat and 13,000 pounds of medicine. Many of Miami’s corporations, associations, and residents contributed to the Managuan Relief effort. Source: The Miami News, March 19, 1973 by Lynn Feigenbaum From: City of Hialeah Publicity Bureu. 401 1/2 East 1st Ave. Hialeah, Fla. 887-3400. april 30, 1973. Cutlines: Florida International University students recently raised more than $ 1,000 for more than 300 dozens toys and balls for the youngsters of Managua, Nicaragua. With the balls above are shown student Committee members and oficials of the Hialeah-Managua Sister City Committee, left to rigth: Bob del Toro, Sister City Committe president Raymond R. Schultz, Student Governance Committee chairman Dianne Haley and Hialeah City councilman Jack Weaver.