896 resultados para cobalt iron PNP carbene hydrogenation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to analyze the phytoremediation potential of Eichhornia crassipes in natural environments, optimize the extraction process of crude protein from plant tissue and, obtain and characterize this process in order to determine its viability of use instead of the protein sources of animal and/or human feed. For this, it has been determined in Apodi/Mossoró river water the concentration of ammonium ions, nitrite, nitrate, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cádmium, lead, and total chromium; It was determined in plant tissue of aquatic macrophytes of Eichhornia crassipes species present in Apodi/Mossoró River the moisture content, ash, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cadmium, lead, total chromium, total nitrogen and crude protein. It was also determined the translocation factor and bioaccumulation of all the quantified elements; It was developed and optimized the extraction procedure of crude protein based on the isoelectric method and a factorial design 24 with repetition; It was extracted and characterized the extract obtained by determining the moisture content, ash, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, cadmium, total nitrogen and crude protein. And finally, it was also characterized the protein extract using Thermogravimetric Analysis (TG), Derived Thermogravimetric (DTG), Differential Scanning Calorimetry (DSC), Infrared Spectroscopy (FT-IR) and jelly-like electrophoresis of polyacrylamide (SDS -PAGE) to assess the their molecular weights/mass. Thus, from the results obtained for the translocation and bioaccumulation factors was found that the same can be used as phytoremediation agent in natural environments of all quantified elements. It was also found that the developed method of extraction and protein precipitation was satisfactory for the purpose of the work, which gave the best conditions of extraction and precipitation of proteins as: pH extraction equal to 13.0, extraction temperature equals 60 ° C, reaction time equals to 30 minutes, and pH precipitation equals to 4.0. As for the extract obtained, the total nitrogen and crude protein were quantified higher than those found in the plant, increasing the crude protein content approximately 116.88% in relation to the quantified contente in the vegetal tissue of macrophyte. The levels of nickel and cadmium were the unique that were found below the detection limit of used the equipment. The electrophoretic analysis allowed us to observe that the protein extract obtained is composed of low polypeptide chains by the molecular and phytochelatins, with 6 and 15 kDa bands. Analysis of TG, DTG, DSC and FT-IR showed similarities in protein content of the obtained extracts based on different collection points and 9 parts of the plant under study, as well as commercial soy protein and casein. Finally, based on all these findings, it was concluded that the obtained extract in this work can be used instead of the protein sources of animal feed should, before that, test its digestibility. As human supplementation, it is necessary to conduct more tests associated with the optimization process in the sense of removing undesirable components and constant monitoring of the water body and the raw material used
Resumo:
Ceramic powders based on oxides of perovskite-type structure is of fundamental interest nowadays, since they have important ionic-electronic conductivity in the use of materials with technological applications such as gas sensors, oxygen permeation membranes, catalysts and electrolytes for solid oxide fuel cells (SOFC). The main objective of the project is to develop nanostructured ceramic compounds quaternary-based oxide Barium (Br), Strontium (Sr), Cobalt (Co) and Iron (Fe). In this project were synthesized compounds BaxSr(1-x)Co0, 8Fe0,2O3- (x = 0.2, 0.5 and 0.8) through the oxalate co-precipitation method. The synthesized powders were characterized by thermogravimetric analysis and differential thermal analysis (TGADTA), X-ray diffraction (XRD) with the Rietveld refinement using the software MAUD and scanning electron microscopy (SEM). The results showed that the synthesis technique used was suitable for production of nanostructured ceramic solid solutions. The powders obtained had a crystalline phase with perovskite-type structure. The TGA-DTA results showed that the homogeneous phase of interest was obtained temperature above 1034°C. It was also observed that the heating rate of the calcination process did not affect the elimination of impurities present in the ceramic powder. The variation in the addition of barium dopant promoted changes in the average crystallite size in the nanometer range, the composition being BSCF(5582) obtained the lowest value (179.0nm). The results obtained by oxalate co-precipitation method were compared with those synthesis methods in solid state and EDTA-citrate method
Resumo:
Background Research in humans has demonstrated that high serum iron (sFe) concentration can predispose to infection, and many infections subsequently result in alterations of host sFe. A decrease in sFe concentration is an early and sensitive indicator of systemic inflammation caused by tissue necrosis, bacterial infections, or endotoxemia in horses. Serum iron parameters in acute equine herpesvirus type 1 (EHV-1) infection have not been evaluated previously. Objectives To document the sFe response to EHV-1 infection and to determine whether or not significant differences in sFe concentration exist between EHV-1 infected horses that develop neurologic disease and those that do not. Animals A total of 14 horses experimentally infected with EHV-1. Methods Data were collected as an ancillary data set during a blinded experimental EHV-1 infection. Horses were infected with the rAb4 strain of EHV-1. Temperature, neurologic score, packed cell volume (PCV), and sFe parameters (sFe concentration, % saturation, and total iron-binding capacity) were recorded daily for 2weeks. Data were evaluated using Wilcoxon signed rank tests and Wilcoxon rank sum tests with Bonferroni corrections. Conclusions and Clinical Relevance Serum iron concentration decreases significantly in a biphasic pattern after EHV-1 infection. There was no significant difference in sFe concentration in horses that developed neurologic disease and those that did not in these experimentally infected animals. Serum iron parameters may be useful in monitoring the clinical course of viral infections such as EHV-1.
Resumo:
Equine antivenom is considered the only treatment for animal-generated envenomations, but it is costly. The study aimed to produce Apis mellifera (Africanized honeybee) and Crotalus durissus terrificus (C.d.t.) antivenoms using nanostructured silica (SBA-15) as adjuvant and cobalt-60 (60Co)-detoxified venoms utilizing young sheep. Natural and 60Co-irradiated venoms were employed in four different hyperimmunization protocols. Thus, 8 groups of 60- to 90-d-old sheep were hyperimmunized, enzyme-linked immunosorbent assay (ELISA) serum titers collected every 14 d were assessed clinically daily, and individual weight were measured, until d 84. Incomplete Freund's (IFA) and nanostructured silica (SBA15) adjuvants were compared. The lethal dose (LD50) for both venoms was determined following intraperitoneal (ip) administration to mice. High-performance liquid chromatography on reversed phase (HPLC-RP) was used also to measure the 60Co irradiation effects on Apis venom. At the end of the study, sheep were killed in a slaughterhouse. Kidneys were histologically analyzed. LD50 was 5.97 mg/kg Apis and 0.07 mg/kg C.d.t. for native compared to 13.44 mg/kg Apis and 0.35 mg/kg C.d.t. for irradiated venoms. HPLC revealed significant differences in chromatographic profiles between native and irradiated Apis venoms. Native venom plus IFA compared with SBA-15 showed significantly higher antibody titers for both venoms. Apis-irradiated venom plus IFA or SBA-15 displayed similar antibody titers but were significantly lower when compared with native venom plus IFA. Weight gain did not differ significantly among all groups. 60Co irradiation decreased toxicity and maintained venom immunogenic capacity, while IFA produced higher antibody titers. SBA-15 was able to act as an adjuvant without producing adverse effects. Hyperimmunization did not affect sheep weight gain, which would considerably reduce the cost of antiserum production, as these sheep were still approved for human consumption even after being subjected to hyperimmunization.
Resumo:
Hepcidin is a highly conserved disulfide-bonded peptide that plays a central role in iron homeostasis. During systemic inflammation, hepcidin up-regulation is responsible for hypoferremia. This study aimed to analyze the influence of the inflammatory process induced by complete Freund's adjuvant (CFA) or lipopolysaccharide (LPS) on the liver expression of hepcidin mRNA transcripts and plasma iron concentration of sheep. The expression levels of hepcidin transcripts were up-regulated after CFA or LPS. Hypoferremic response was observed at 12 h (15.46 +/- 6.05 mu mol/L) or 6 h (14.59 +/- 4.38 mu mol/L) and iron reached its lowest level at 96 h (3.08 +/- 1.18 mu mol/L) or 16 h (4.06 +/- 1.58 mu mol/L) after CFA administration or LPS infusion, respectively. This study demonstrated that the iron regulatory hormone hepcidin was up-regulated in sheep liver in response to systemic inflammation. These findings extend our knowledge on the relationship between the systemic inflammatory response, hepcidin and iron, and provide a starting point for additional studies on iron metabolism and the inflammatory process in sheep. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Silica gel chemically modified with 2-aminotiazole groups (SiAT), was used for preconcentration of cupper, zinc, nickel and iron from gasoline, normally used as a engine fuel. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl-0.25-2.00 mol 1(-1)) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for cupper, iron, nickel and zinc are 0.8, 3, 2 and 0.1 mug 1(-1), respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in gasoline using flame AAS for their quantification. (C) 2004 Published by Elsevier Ltd.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.3 Angstrom resolution, which allowed a redefinition of the residues involved in the substrate-binding sites and provided a more reliable model for structure-based design of inhibitors. This work reports crystallographic study of the complex of Human PNP:guanine (HsPNP:Gua) solved at 2.7 Angstrom resolution using synchrotron radiation. Analysis of the structural differences among the HsPNP:Gua complex, PNP apoenzyme, and HsPNP:immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 Angstrom resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The parasite Schistosoma mansoni lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. Schistosomiasis is endemic in 76 countries and territories and amongst the parasitic diseases ranks second after malaria in terms of social and economic impact and public health importance. The PNP is an attractive target for drug design and it has been submitted to extensive structure-based design. The atomic coordinates of the complex of human PNP with inosine were used as template for starting the modeling of PNP from S. mansoni complexed with inosine. Here we describe the model for the complex SmPNP-inosine and correlate the structure with differences in the affinity for inosine presented by human and S. mansoni PNPs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme, which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effects on B-cell function. Human PNP has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Here we report the crystal structure of human PNP in complex with hypoxanthine, refined to 2.6 Angstrom resolution. The intermolecular interaction between ligand and PNP is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Purine nucleoside phosphorylase (PNP) is a key enzyme in the purine-salvage pathway, which allows cells to utilize preformed bases and nucleosides in order to synthesize nucleotides. PNP is specific for purine nucleosides in the beta-configuration and exhibits a strong preference for purines containing a 6-keto group and ribosyl-containing nucleosides relative to the corresponding analogues. PNP was crystallized in complex with ligands and data collection was performed using synchrotron radiation. This work reports the structure of human PNP in complex with guanosine (at 2.80 angstrom resolution), 3' deoxyguanosine (at 2.86 angstrom resolution) and 8-azaguanine (at 2.85 angstrom resolution). These structures were compared with the PNP-guanine, PNP-inosine and PNP-immucillin-H complexes solved previously.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier B.V. All rights reserved.