986 resultados para chromosomes aberrations
Resumo:
ABSTRACT Poor outcome for glioblastoma patients is largely due to resistance to chemoradiation therapy. While epigenetic inactivation of MGMT mediated DNA repair is highly predictive for benefit from the alkylating agent therapy Temozolomide, additional mechanisms for resistance associated with molecular alterations exist. Furthermore, new concepts in cancer suggest that resistance to treatment may be linked to cancer stem cells that escape therapy and act as source for tumour recurrence. We determined gene expression signatures associated with outcome in glioblastoma patients enrolled in a phase II and phase III clinical trial establishing the new combination therapy of radiation plus concomitant and adjuvant Temozolomide. Correlating stable gene clusters emerging from unsupervised analysis with survival of 42 treated patients identified a number of biological processes associated with outcome. Most prominent, a gene cluster dominated by HOX genes and comprising PROM1, was associated with resistance. PROM1 encodes CD133, a marker for a subpopulation of tumour cells enriched for glioblastoma stem- like cells. The core of this correlated HOX cluster was comprised in the top genes of a "self-renewal signature" defined in a mouse model for MLL-AF9 initiated leukaemia. The association of the HOX gene cluster with tumour resistance was confirmed in two external data sets of 146 malignant glioma As additional resistance factors we identified over-expression of the epidermal growth factor receptor gene, EGFR, while increased gene expression related to biological features of tumour host interaction, including markers for tumour vascular and cell adhesion, and innate immune response, were associated with better outcome. The "self-renewal" signature associated with resistance to the new combination chemoradiation therapy provides first clinical evidence that glioma stem like cells may implicated in resistance in a uniformly treated cohort of glioblastoma patients. This study underlines the need to target the tumour stem cell compartment, and provides some testable hypothesis for biological mechanisms relevant for malignant behaviour of glioblastoma that may be targeted in new treatment approaches. Résumé Le glioblastome, tumeur cérébrale primaire maligne la plus fréquente, est connue pour son mauvais pronostique. Des avancées chimiothérapeutiques récentes avec des agents alkylants comme le témozolomide (TMZ), ont permis une amélioration notable dans la survie de certains patients. Les bénéficiaires ont la caractéristique commune de présenter une particularité génétique, la methylation du MGMT (methylguanine methyltransferase). Néanmoins, d'autres mécanismes de résistance en fonction des aberrations moléculaires existent. Nous avons établi les profils d'expressions génétiques des patients traités par irradiation et TMZ dans des études cliniques de phase II et III. En combinant des méthodes non-supervisées et supervisées, de l'étude de la cohorte des patients traités nous avons découvert des groupes de gènes associés à la survie. Un ensemble de gènes contenant les gènes Hox semble lié au mécanisme de résistance au traitement. Récemment, les gènes Hox ont été décrits comme faisant partie d"une signature d'autorenouvellement (self-renewal) des cellules souches cancéreuses de la leucémie. L'autorenouvellement est un processus grâce auquel les cellules souches se maintiennent tout au long de la vie. Cette association à la résistance est confirmée dans deux autres études indépendantes. Un autre facteur de résistance au traitement est la surexpression du gène EGFR. D'autre part, deux groupes de gènes associés à la relation entre hôte-tumeur tels que les marqueurs des vaisseaux tumoraux et de la réponse immunitaire innée s'avèrent avoir un effet positif sur la survie des patients traités. La découverte de la signature d'autorenouvellement comme facteur de résistance à la nouvelle chimio-radiothérapie offre une preuve clinique que les cellules souches cancéreuses sont impliquées dans la résistance au traitement. If est donc logique de penser que le traitement ciblé contre des cellules souches cancéreuses va dans l'avenir permettre des thérapies anticancéreuses plus performantes.
Resumo:
Cancer/testis (CT) genes are normally expressed in germ cells only, yet are reactivated and expressed in some tumors. Of the approximately 40 CT genes or gene families identified to date, 20 are on the X chromosome and are present as multigene families, many with highly conserved members. This indicates that novel CT gene families may be identified by detecting duplicated expressed genes on chromosome X. By searching for transcript clusters that map to multiple locations on the chromosome, followed by in silico analysis of their gene expression profiles, we identified five novel gene families with testis-specific expression and >98% sequence identity among family members. The expression of these genes in normal tissues and various tumor cell lines and specimens was evaluated by qualitative and quantitative RT-PCR, and a novel CT gene family with at least 13 copies was identified on Xq24, designated as CT47. mRNA expression of CT47 was found mainly in the testes, with weak expression in the placenta. Brain tissue was the only positive somatic tissue tested, with an estimated CT47 transcript level 0.09% of that found in testis. Among the tumor specimens tested, CT47 expression was found in approximately 15% of lung cancer and esophageal cancer specimens, but not in colorectal cancer or breast cancer. The putative CT47 protein consists of 288 amino acid residues, with a C-terminus rich in alanine and glutamic acid. The only species other than human in which a gene homologous to CT47 has been detected is the chimpanzee, with the predicted protein showing approximately 80% identity in its carboxy terminal region.
Resumo:
Infantile spasms (IS) is the most severe and common form of epilepsy occurring in the first year of life. At least half of IS cases are idiopathic in origin, with others presumed to arise because of brain insult or malformation. Here, we identify a locus for IS by high-resolution mapping of 7q11.23-q21.1 interstitial deletions in patients. The breakpoints delineate a 500 kb interval within the MAGI2 gene (1.4 Mb in size) that is hemizygously disrupted in 15 of 16 participants with IS or childhood epilepsy, but remains intact in 11 of 12 participants with no seizure history. MAGI2 encodes the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 that interacts with Stargazin, a protein also associated with epilepsy in the stargazer mouse.
Resumo:
Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and cataplexy. Familial narcolepsy accounts for less than 10% of all narcolepsy cases. However, documented multiplex families are very rare and causative mutations have not been identified to date. To identify a causative mutation in familial narcolepsy, we performed linkage analysis in the largest ever reported family, which has 12 affected members, and sequenced coding regions of the genome (exome sequencing) of three affected members with narcolepsy and cataplexy. We successfully mapped a candidate locus on chromosomal region 6p22.1 (LOD score ¼ 3.85) by linkage analysis. Exome sequencing identified a missense mutation in the second exon of MOG within the linkage region. A c.398C>G mutation was present in all affected family members but absent in unaffected members and 775 unrelated control subjects. Transient expression of mutant myelin oligodendrocyte glycoprotein (MOG) in mouse oligodendrocytes showed abnormal subcellular localization, suggesting an altered function of the mutant MOG. MOG has recently been linked to various neuropsychiatric disorders and is considered as a key autoantigen in multiple sclerosis and in its animal model, experimental autoimmune encephalitis. Our finding of a pathogenic MOG mutation highlights a major role for myelin and oligodendrocytes in narcolepsy and further emphasizes glial involvement in neurodegeneration and neurobehavioral disorders. [corrected].
Resumo:
PURPOSE: O6-methylguanine-methyltransferase (MGMT) promoter methylation has been shown to predict survival of patients with glioblastomas if temozolomide is added to radiotherapy (RT). It is unknown if MGMT promoter methylation is also predictive to outcome to RT followed by adjuvant procarbazine, lomustine, and vincristine (PCV) chemotherapy in patients with anaplastic oligodendroglial tumors (AOT). PATIENTS AND METHODS: In the European Organisation for the Research and Treatment of Cancer study 26951, 368 patients with AOT were randomly assigned to either RT alone or to RT followed by adjuvant PCV. From 165 patients of this study, formalin-fixed, paraffin-embedded tumor tissue was available for MGMT promoter methylation analysis. This was investigated with methylation specific multiplex ligation-dependent probe amplification. RESULTS: In 152 cases, an MGMT result was obtained, in 121 (80%) cases MGMT promoter methylation was observed. Methylation strongly correlated with combined loss of chromosome 1p and 19q loss (P = .00043). In multivariate analysis, MGMT promoter methylation, 1p/19q codeletion, tumor necrosis, and extent of resection were independent prognostic factors. The prognostic significance of MGMT promoter methylation was equally strong in the RT arm and the RT/PCV arm for both progression-free survival and overall survival. In tumors diagnosed at central pathology review as glioblastoma, no prognostic effect of MGMT promoter methylation was observed. CONCLUSION: In this study, on patients with AOT MGMT promoter methylation was of prognostic significance and did not have predictive significance for outcome to adjuvant PCV chemotherapy. The biologic effect of MGMT promoter methylation or pathogenetic features associated with MGMT promoter methylation may be different for AOT compared with glioblastoma.
Resumo:
The Microbe browser is a web server providing comparative microbial genomics data. It offers comprehensive, integrated data from GenBank, RefSeq, UniProt, InterPro, Gene Ontology and the Orthologs Matrix Project (OMA) database, displayed along with gene predictions from five software packages. The Microbe browser is daily updated from the source databases and includes all completely sequenced bacterial and archaeal genomes. The data are displayed in an easy-to-use, interactive website based on Ensembl software. The Microbe browser is available at http://microbe.vital-it.ch/. Programmatic access is available through the OMA application programming interface (API) at http://microbe.vital-it.ch/api.
Resumo:
Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western 'obesogenic' environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the 'common disease, common variant' hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) >or= 40 kg m(-2) or BMI standard deviation score >or= 4; P = 6.4 x 10(-8), odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the 'power of the extreme' in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.
Resumo:
B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.
Resumo:
The question of where retroviral DNA becomes integrated in chromosomes is important for understanding (i) the mechanisms of viral growth, (ii) devising new anti-retroviral therapy, (iii) understanding how genomes evolve, and (iv) developing safer methods for gene therapy. With the completion of genome sequences for many organisms, it has become possible to study integration targeting by cloning and sequencing large numbers of host-virus DNA junctions, then mapping the host DNA segments back onto the genomic sequence. This allows statistical analysis of the distribution of integration sites relative to the myriad types of genomic features that are also being mapped onto the sequence scaffold. Here we present methods for recovering and analyzing integration site sequences.
Resumo:
PURPOSE: To identify the genetic defect for the Coppock-like cataract (CCL) affecting a Swiss family, which defect was unlinked to the chromosome 2q33-35 CCL locus. METHODS: A large family was characterized for linkage analysis by slit lamp examination or by the review of drawings made before cataract extraction. The affection status was attributed before genotyping, and the genotyping was masked to the affection status. Two-point and multipoint linkage analyses were performed using the MLINK and the LINKMAP components of the LINKAGE program package (ver. 5.1), respectively. Mutational analysis of candidate genes was performed by a combination of direct cycle sequencing and an amplification refractory mutation system assay. RESULTS: Ten individuals were affected with the CCL phenotype. The disease was autosomal dominant and appeared to be fully penetrant. A new CCL locus was identified on chromosome 22q11.2 within a 11.67-cM interval (maximum lod score [Zmax] = 4.14; theta = 0). Mutational analysis of the CRYBB2 candidate gene identified a disease-causing mutation in exon 6. This sequence change was identical with that previously described to be associated with the cerulean cataract, a clinically distinct entity. CONCLUSIONS: The CCL phenotype is genetically heterogeneous with a second gene on chromosome 22q11.2, CRYBB2. The CCL and the cerulean cataract are two distinct clinical entities associated with the same genetic defect. This work provides evidence for a modifier factor that influences cataract formation and that remains to be identified.
Resumo:
Recent technological progress has greatly facilitated de novo genome sequencing. However, de novo assemblies consist in many pieces of contiguous sequence (contigs) arranged in thousands of scaffolds instead of small numbers of chromosomes. Confirming and improving the quality of such assemblies is critical for subsequent analysis. We present a method to evaluate genome scaffolding by aligning independently obtained transcriptome sequences to the genome and visually summarizing the alignments using the Cytoscape software. Applying this method to the genome of the red fire ant Solenopsis invicta allowed us to identify inconsistencies in 7%, confirm contig order in 20% and extend 16% of scaffolds.Scripts that generate tables for visualization in Cytoscape from FASTA sequence and scaffolding information files are publicly available at https://github.com/ksanao/TGNet.
Resumo:
The combination of multiple exostoses (EXT) and enlarged parietal foramina (foramina parietalia permagna, FPP) represent the main features of the proximal 11p deletion syndrome (P11pDS), a contiguous gene syndrome (MIM 601224) caused by an interstitial deletion on the short arm of chromosome 11. Here we present clinical aspects of two new P11pDS patients and the clinical follow-up of one patient reported in the original paper describing this syndrome. Recognised clinical signs include EXT, FPP, mental retardation, facial asymmetry, asymmetric calcification of coronary sutures, defective vision (severe myopia, nystagmus, strabismus), skeletal anomalies (small hands and feet, tapering fingers), heart defect, and anal stenosis. In addition fluorescence in situ hybridisation and molecular analysis were performed to gain further insight in potential candidate genes involved in P11pDS.