926 resultados para brain, computer, interface
Resumo:
The nonlinear self-interaction of the potential surface magnetoplasmons, propagating across the external magnetic field at the n-type semiconductor-metal interface is described in this manuscript. The studied nonlinearity is due to the free carriers dispersion law nonparabolicity and we show that it acts differently in semiconductor materials with normal and inverse band structures. The results of the nonlinear evolution of the surface magnetoplasmons are presented as well.
Resumo:
This article enhances existing approaches to present-day asynchronous awareness concepts by providing the means to explicitly represent and mediate contextual information. The resulting concept of contextual awareness takes different notions of the term context into account. Following a human-centered approach, the proposed methods serve as mediators for context between persons rather than automatically detecting context. Based on this variant of awareness, the atmosphere framework is introduced to provide mechanisms to deal with the problem of workload in tandem with contextual information. Atmosphere provides a highly tailorable structure and interface to deal with a wide variance of user and organizational requirements. The article closes with the description of a partial implementation of the framework and its evaluation.
Resumo:
The ponderomotive force effects on surface waves at a plasma-metal interface are studied. The waves propagate across an external magnetic field parallel to the interface. It is shown that the account of the ponderomotive force can lead to the appearance of solitons, which are not possible when the second-harmonic and magnetic nonlinearities are concerned. © 1998 American Institute of Physics.
Resumo:
Theoretical and experimental results associated with the studies of different properties of surface-type waves (SW) in plasma-like medium-metal structures are reviewed. The propagation of surface waves in the Voigt geometry (the SW propagate across the external magnetic field, which is parallel to the interface) is considered. Various problems dealing with the linear properties of the SW (dispersion characteristics, electromagnetic fields topography, influence of the inhomogeneity of the medium, etc.); excitation mechanisms of the plasma-metal waveguide structures (parametric, drift, diffraction, etc. mechanisms); nonlinear effects associated with SW propagation (higher harmonics generation, self-interaction, nonlinear damping, nonlinear interactions, etc.) are presented. In many cases the results are valid for both gaseous and solid-state plasmas. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In approximation of weak heating influence of electron heating in the high-frequency surface wave field on propagation of surface wave (heating nonlinearity) is considered. It is shown that high-frequency surface wave propagates in direction perpendicular to the external magnetic field at the semiconductor-metal interface. A nonlinear dispersion equation is obtained and studied that allows to make conclusions about the contribution of heating nonlinearity to nonlinear process of considered interaction.
Resumo:
The term “Human error” can simply be defined as an error which made by a human. In fact, Human error is an explanation of malfunctions, unintended consequents from operating a system. There are many factors that cause a person to have an error due to the unwanted error of human. The aim of this paper is to investigate the relationship of human error as one of the factors to computer related abuses. The paper beings by computer-relating to human errors and followed by mechanism mitigate these errors through social and technical perspectives. We present the 25 techniques of computer crime prevention, as a heuristic device that assists. A last section discussing the ways of improving the adoption of security, and conclusion.
Resumo:
In this paper we contribute to the growing body of research into the use and design of technology in the kitchen. This research aims to identify opportunities for designing technologies that may augment existing cooking traditions and in particular familial recipe sharing practices. Using ethnographic techniques, we identify the homemade cookbook as a significant material and cultural artifact in the family kitchen. We report on findings from our study by providing descriptive accounts of various homemade cookbooks, and offer design considerations for digitally augmenting homemade cookbooks.
Resumo:
Service mismatches involve the adaptation of structural and behavioural interfaces of services, which in practice incurs long lead times through manual, coding e ort. We propose a framework, complementary to conventional service adaptation, to extract comprehensive and seman- tically normalised service interfaces, useful for interoperability in large business networks and the Internet of Services. The framework supports introspection and analysis of large and overloaded operational signa- tures to derive focal artefacts, namely the underlying business objects of services. A more simpli ed and comprehensive service interface layer is created based on these, and rendered into semantically normalised in- terfaces, given an ontology accrued through the framework from service analysis history. This opens up the prospect of supporting capability comparisons across services, and run-time request backtracking and ad- justment, as consumers discover new features of a service's operations through corresponding features of similar services. This paper provides a rst exposition of the service interface synthesis framework, describing patterns having novel requirements for unilateral service adaptation, and algorithms for interface introspection and business object alignment. A prototype implementation and analysis of web services drawn from com- mercial logistic systems are used to validate the algorithms and identify open challenges and future research directions.
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.
Resumo:
A novel replaceable, modularized energy storage system with wireless interface is proposed for a battery operated electric vehicle (EV). The operation of the proposed system is explained and analyzed with an equivalent circuit and an averaged state-space model. A non-linear feedback linearization based controller is developed and implemented to regulate the DC link voltage by modulating the phase shift ratio. The working and control of the proposed system is verified through simulation and some preliminary results are presented.
Resumo:
Computer modelling has been used extensively in some processes in the sugar industry to achieve significant gains. This paper reviews the investigations carried out over approximately the last twenty five years,including the successes but also areas where problems and delays have been encountered. In that time the capability of both hardware and software have increased dramatically. For some processes such as cane cleaning, cane billet preparation, and sugar drying, the application of computer modelling towards improved equipment design and operation has been quite limited. A particular problem has been the large number of particles and particle interactions in these applications, which, if modelled individually, is computationally very intensive. Despite the problems, some attempts have already been made and knowledge gained on tackling these issues. Even if the detailed modelling is wanting, a model can provide some useful insights into the processes. Some options to attack these more intensive problems include the use of commercial software packages, which are usually very robust and allow the addition of user-supplied subroutines to adapt the software to particular problems. Suppliers of such software usually charge a fee per CPU licence, which is often problematic for large problems that require the use of many CPUs. Another option to consider is using open source software that has been developed with the capability to access large parallel resources. Such software has the added advantage of access to the full internal coding. This paper identifies and discusses the detail of software options with the potential capability to achieve improvements in the sugar industry.
Resumo:
The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.
Resumo:
MicroRNAs are small non-coding RNAs that mediate post-transcriptional gene silencing. Fear-extinction learning in C57/Bl6J mice led to increased expression of the brain-specific microRNA miR-128b, which disrupted stability of several plasticity-related target genes and regulated formation of fear-extinction memory. Increased miR-128b activity may therefore facilitate the transition from retrieval of the original fear memory toward the formation of a new fear-extinction memory.
Resumo:
This paper explores the possibility of using grid side inverter as an interface to connect energy storage systems. A dual inverter system, formed by cascading two 2-level inverters through a coupling transformer, is used as the testing model. The inverters are named as “main inverter” and “auxiliary inverter”. The main inverter is powered by the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). If there is a surplus of wind power compared to the demand, then that would be stored in BESS while if there is a deficit in wind power then the demand will be satisfied by supplying power from the BESS. This enables constant power dispatch to the grid irrespective of wind changes. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-varying dc-link voltage ratio, which is due to random wind changes. Furthermore, a maximum power tracking controller for this unique system is explained in detail. Simulation results verify the efficacy of proposed modulation and control techniques in suppressing random power fluctuations.
Resumo:
Interactive art system +-now has a tangible interface augmented and real-time computer graphics elements. It concerns creative audience experiences facilitated through perceptual emergence.