840 resultados para WIDE-RANGE CURRENT MEASUREMENT
Resumo:
Over the past decade, Mental Health (MH) has increasingly appeared on the ‘school agenda’, both in terms of rising levels of MH difficulties in the student population, and also the expectation that schools have a role to play in supporting good MH. MH is a term fraught with ambiguities leading to uncertainty around the most appropriate ways to provide support. A review of current literature reveals a wide range of definitions and interpretations, sometimes within the same team of supporting professionals. The current study seeks to explore the perspectives held by two professional groups seemingly well placed to support young persons’ (YPs’) MH. Six Clinical Psychologists (CPs) and six Educational Psychologists (EPs) are interviewed, exploring their constructs of MH, and their perceptions of their own role and the roles of others in supporting secondary school aged YPs’ MH. The data are analysed through Thematic Analysis. Findings suggest that there are variations between the two professions’ constructs of MH, and EPs in particular have no unified concept of MH. This is likely due to less experience or training in this area. CPs and EPs hold similar perceptions of the school’s role for promoting good MH, and flagging up concerns to more specialist professionals when necessary. However, there are discrepancies in the EP and CP perceptions of each other’s roles. The conflicting views appear to emerge through incomplete information about the other, and professional defensiveness in a context where resources and funding are scarce. The current study suggests that these challenges can be addressed through: greater reflectivity on professional biases, exploration of MH constructs within other epistemological positions, and greater communication regarding professional roles, leading to clearer collaboration in supporting the MH of YP.
Resumo:
The use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.
Resumo:
Internet users consume online targeted advertising based on information collected about them and voluntarily share personal information in social networks. Sensor information and data from smart-phones is collected and used by applications, sometimes in unclear ways. As it happens today with smartphones, in the near future sensors will be shipped in all types of connected devices, enabling ubiquitous information gathering from the physical environment, enabling the vision of Ambient Intelligence. The value of gathered data, if not obvious, can be harnessed through data mining techniques and put to use by enabling personalized and tailored services as well as business intelligence practices, fueling the digital economy. However, the ever-expanding information gathering and use undermines the privacy conceptions of the past. Natural social practices of managing privacy in daily relations are overridden by socially-awkward communication tools, service providers struggle with security issues resulting in harmful data leaks, governments use mass surveillance techniques, the incentives of the digital economy threaten consumer privacy, and the advancement of consumergrade data-gathering technology enables new inter-personal abuses. A wide range of fields attempts to address technology-related privacy problems, however they vary immensely in terms of assumptions, scope and approach. Privacy of future use cases is typically handled vertically, instead of building upon previous work that can be re-contextualized, while current privacy problems are typically addressed per type in a more focused way. Because significant effort was required to make sense of the relations and structure of privacy-related work, this thesis attempts to transmit a structured view of it. It is multi-disciplinary - from cryptography to economics, including distributed systems and information theory - and addresses privacy issues of different natures. As existing work is framed and discussed, the contributions to the state-of-theart done in the scope of this thesis are presented. The contributions add to five distinct areas: 1) identity in distributed systems; 2) future context-aware services; 3) event-based context management; 4) low-latency information flow control; 5) high-dimensional dataset anonymity. Finally, having laid out such landscape of the privacy-preserving work, the current and future privacy challenges are discussed, considering not only technical but also socio-economic perspectives.
Resumo:
Tendo em conta os conceitos atuais da doença cárie dentária a necessidade de diagnóstico precoce das lesões de desmineralização que afetam o esmalte, pretendeu-se realizar uma revisão bibliográfica descritiva com os seguintes objetivos: descrever os principais conceitos acerca das lesões não cavitadas de cárie no esmalte, relacionadas com prevalência, gravidade, formas de deteção e registo; pretendeu-se ainda efetuar uma revisão da ação química dos agentes remineralizantes e infiltrantes, em lesões não cavitadas do esmalte, focando-se essencialmente na sua identificação, descrição, modos de apresentação, mecanismo de ação, modo de atuação clínica, principais evidências in vitro e in vivo sobre a ação dos remineralizantes e infiltrantes. Para tal, foi utilizada a metodologia PICO para a formulação das questões, avaliação e síntese da evidência empírica a incluir neste estudo. Os achados resultam da análise de 148 artigos, quer de perfil qualitativo, quer do perfil quantitativo, dos quais 104 são de revisões de literatura e 44 são empíricos, destes 44 artigos, 13 são relativos a infiltrantes e 31 são relativos a remineralizantes. Foram colocadas as palavras-chave: “enamel remineralization”, “ICDAS”, “white spot lesion”, “non-cavitated caries lesions”, “resin infiltration”, “infiltrants”, “dental caries detection”, “remineralizing agents”, “demineralization-remineralization” e “dental toothpaste”. Os critérios de inclusão foram: estudos observacionais, in vivo e in vitro, revisões narrativas, sistemáticas e meta-análises, escritas em nomenclatura Inglesa, sem período temporal definido, dando no entanto mais relevo clínico a publicações entre os anos de 2005 e 2016. Os critérios de exclusão foram todos os artigos que se referissem a lesões na dentina ou lesões cavitadas de esmalte, lesões odontopediátricas, lesões de cárie de raiz e materiais restauradores que não fossem infiltrantes. Foi possível concluir que ambas as técnicas (atuação por agentes remineralizantes e por infiltração resinosa) são eficazes na remineralização de lesões cariosas incipientes no esmalte. Os agentes remineralizantes apresentam uma vasta gama de formulações de acordo com as necessidades de cada paciente, enquanto os infiltrantes por serem uma técnica ainda recente apenas apresentam um composto disponível comercialmente para a sua aplicação em consultório dentário.
Resumo:
BACKGROUND: Health-related quality of life (HRQL) assessment is an important measure of the impact of a wide range of disease process on an individual. To date, no HRQL tool has been evaluated in an Iranian population with cardiovascular disorders, specifically myocardial infarction, a major cause of mortality and morbidity. The MacNew Heart Disease Health-related Quality of Life instrument is a disease-specific HRQL questionnaire with satisfactory validity and reliability when applied cross-culturally. METHOD: A Persian version of MacNew was prepared by both forward and backward translation by bilinguals after which a feasibility test was performed. Consecutive patients (n = 51) admitted to a coronary care unit with acute myocardial infarction were recruited for measurement of their HRQL with retest one month after discharge in the follow-up clinic. Principal components analysis, intra-class correlation reliability, internal consistency, and test-retest reliability were assessed. RESULTS: Trivial rates of missing data confirmed the acceptability of the tool. Principal component analysis revealed that the three domains, emotional, social and physical, performed as well as in the original studies. Internal consistency was high and comparable to other studies, ranging from 0.92 for the emotional and physical domains, to 0.94 for the social domain, and to 0.95 for the Global score. Domain means of 5, 5.3 and 4.9 for emotional, physical and social respectively indicate that our Iranian population has similar emotional and physical but worse social HRQL scores. Test-retest analysis showed significant correlation in emotional and physical domains (P < 0.05). CONCLUSION: The Persian version of the MacNew questionnaire is comparable to the English version. It has high internal consistency and reasonable reproducibility, making it an appropriate specific quality of life tool for population-based studies and clinical practice in Iran in patients who have survived an acute myocardial infraction. Further studies are needed to confirm its validity in larger populations with cardiovascular disease
Resumo:
As Universidades Seniores têm vindo a assumir um papel cada vez mais preponderante nas transformações das sociedades ocidentais atuais, as quais têm a responsabilidade de integrar, absorver e até mesmo beneficiar das mais-valias caraterísticas do aluno sénior. São portanto o reflexo das mudanças de paradigma do adulto sénior, permitindo variadíssimas possibilidades e atividades orientadas para este público. A proposta de novas práticas e metodologias é consequentemente, desejável a partir de novas abordagens didáticas de ensino que tentam acompanhar a disponibilidade de informação facilitadora do acesso ao conhecimento. A diversidade de meios e o cruzamento de várias disciplinas artísticas apresentam-se como componentes de um processo que se pretende dinâmico e atual. Neste relatório de estágio, coloca-se a questão da valorização da Criação Artística, através de uma abordagem contemporânea, na configuração das ofertas educativas no seio das Universidades Seniores em geral, e da Universidade Sénior de Ovar em particular. Como tal é proposto o desenvolvimento do projeto Incubadora Artística como configuração experimental daquilo que é admitido como possibilidade alargada de aproximação à arte, em geral, e à arte contemporânea, em particular, por parte do aluno sénior conhecendo e explorando as diferentes expressões artísticas, bem como usando as mesmas nas suas próprias produções artística.
Resumo:
Stress is a phenomenon that on some level affects everyone’s lives on a daily basis. The autonomic nervous system controls the varying levels of stress at any given time. The responses of the autonomic nervous system adjust the body to cope with changing external and internal conditions. During high-stress situations the body is forced into a state of heightened alertness, which passes when the stressor is removed. The stressor can be any external or internal event that causes the body to respond. Stress is a very versatile phenomenon that can be both a cause and an indicator of other medical conditions, for example cardiovascular disease. Stress detection can therefore be helpful in identifying these conditions and monitoring the overall emotional state of a person. Electrodermal activity (EDA) is one of the most easily implemented ways to monitor the activity of the autonomic nervous system. EDA describes changes occurring in the various electrical properties of the skin, including skin conductivity and resistance. Increased emotional sweating has been proven to be one possible indication of stress. On the surface of the skin, increased sweating translates to increased skin conductivity, which can be observed through EDA measurements. This makes electrodermal activity a very useful tool in a wide range of applications where it is desirable to observe changes in a person’s stress level. EDA can be recorded by using specialized body sensors placed on specific locations on the body. Most commonly used recording sites are the palms of the hands due to the high sweat gland density on those areas. Measurement is done using at least two electrodes attached to the skin, and recording the electrical conductance between them. This thesis implements a prototype of a wireless EDA measurement system. The feasibility of the prototype is also verified with a small group of test subjects. EDA was recorded from the subjects while they were playing a game of Tetris. The goal was to observe variations in the measured EDA that would indicate changes in the subjects’ stress levels during the game. The analysis of the obtained measurement results confirmed the connection between stress and recorded EDA. During the game, random occurrences of lowered skin resistance were clearly observable, which indicates points in the game where the player felt more anxious. A wireless measurement system has the potential of offering more flexible and comfortable long-term measuring of EDA, and could be utilized in a wide range of applications.
Resumo:
In this work, the existing understanding of flame spread dynamics is enhanced through an extensive study of the heat transfer from flames spreading vertically upwards across 5 cm wide, 20 cm tall samples of extruded Poly (Methyl Methacrylate) (PMMA). These experiments have provided highly spatially resolved measurements of flame to surface heat flux and material burning rate at the critical length scale of interest, with a level of accuracy and detail unmatched by previous empirical or computational studies. Using these measurements, a wall flame model was developed that describes a flame’s heat feedback profile (both in the continuous flame region and the thermal plume above) solely as a function of material burning rate. Additional experiments were conducted to measure flame heat flux and sample mass loss rate as flames spread vertically upwards over the surface of seven other commonly used polymers, two of which are glass reinforced composite materials. Using these measurements, our wall flame model has been generalized such that it can predict heat feedback from flames supported by a wide range of materials. For the seven materials tested here – which present a varied range of burning behaviors including dripping, polymer melt flow, sample burnout, and heavy soot formation – model-predicted flame heat flux has been shown to match experimental measurements (taken across the full length of the flame) with an average accuracy of 3.9 kW m-2 (approximately 10 – 15 % of peak measured flame heat flux). This flame model has since been coupled with a powerful solid phase pyrolysis solver, ThermaKin2D, which computes the transient rate of gaseous fuel production of constituents of a pyrolyzing solid in response to an external heat flux, based on fundamental physical and chemical properties. Together, this unified model captures the two fundamental controlling mechanisms of upward flame spread – gas phase flame heat transfer and solid phase material degradation. This has enabled simulations of flame spread dynamics with a reasonable computational cost and accuracy beyond that of current models. This unified model of material degradation provides the framework to quantitatively study material burning behavior in response to a wide range of common fire scenarios.
Resumo:
Microalgae have a wide range of application fields, from food to fuels, to pharmaceuticals & fine chemicals, aquaculture and environmental bioremediation, among others. Spirulina and Chlorella have been used as food sources since ancient times, due to their high and balanced nutritional value. Our research group in Lisbon has developed a range of food products (emulsions, gelled desserts, biscuits and pastas) enriched with freshwater and marine microalgae (Spirulina, Chlorella, Haematococcus, Isochrysis and Diacronema). The developed products presented attractive and stable colours, high resistance to oxidation and enhanced rheological properties. Some of these products will be prepared at the Post-Congress Course “Functional Foods Development” at the University of Antofagasta. More recently, a great interest has arisen on using microalgae for biofuel production. The same group has also been exploring several marine and freshwater species for biofuel production (e.g., biodiesel, bioethanol, biohydrogen and biomethane) within a biorefinery approach, in order to obtain high and low-value co-products using integral biomass maximizing the energy revenue. Namely, supercritical fluid extraction of Nannochloropsis sp. allowed the recovery of valuable carotenoids and lipids, prior to bioH2 production through dark fermentation of the residual biomass. Also, Scenedesmus obliquus residues after sugars (for bioethanol) and lipids (for biodiesel) extraction has been anaerobically digested attaining high biomethane yields. Regarding sustainability issues, the current trend of our group is now focused on using liquid effluents and high CO2 levels for low cost microalgae growth, contributing to a lower water demand, primary energy consumption and global warming potential by reducing the need for potable water and fertilizers (P, N) and increasing CO2 mitigation. Microalgae biomass has been successfully used for urban wastewater treatment with subsequent bioH2 production, in a biorefinery approach. Presently, ammonium-rich raw effluents from piggeries and poultry industry are being effectively used for microalgae growth avoiding any pre-treatment step.
Resumo:
Seaports play a critical role as gateways and facilitators of economic interchange and logistics processes and thus have become crucial nodes in globalised production networks andmobility systems. Both the physical port infrastructure and its operational superstructure have undergone intensive evolution processes in an effort to adapt to changing economic environments, technological advances,maritime industry expectations and institutional reforms. The results, in terms of infrastructure, operator models and the role of an individual port within the port system, vary by region, institutional and economic context. While ports have undoubtedly developed in scale to respond to the changing volumes and structures in geographies of trade (Wilmsmeier, 2015), the development of hinterland access infrastructure, regulatory systems and institutional structures have in many instances lagged behind. The resulting bottlenecks reflect deficits in the interplay between the economic system and the factors defining port development (e.g. transport demand, the structure of trade, transport services, institutional capacities, etc. cf. Cullinane and Wilmsmeier, 2011). There is a wide range of case study approaches and analyses of individual ports, but analyses from a port system perspective are less common, and those that exist are seldom critical of the dominant discourse assuming the efficiency of market competition (cf. Debrie et al., 2013). This special section aims to capture the spectrum of approaches in current geography research on port system evolution. Thus, the papers reach from the traditional spatial approach (Rodrigue and Ashar, this volume) to network analysis (Mohamed-Chérif and Ducruet, this volume) to institutional discussions (Vonck and Notteboom, this volume; Wilmsmeier and Monios, this volume). The selection of papers allows an opening of discussion and reflection on current research, necessary critical analysis of the influences on port systemevolution and,most importantly, future directions. The remainder of this editorial aims to reflect on these challenges and identify the potential for future research.
Resumo:
Wydział Nauk Społecznych: Instytut Socjologii
Resumo:
Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.
Resumo:
The main purpose of the current study was to examine the role of vocabulary knowledge (VK) and syntactic knowledge (SK) in L2 listening comprehension, as well as their relative significance. Unlike previous studies, the current project employed assessment tasks to measure aural and proceduralized VK and SK. In terms of VK, to avoid under-representing the construct, measures of both breadth (VB) and depth (VD) were included. Additionally, the current study examined the role of VK and SK by accounting for individual differences in two important cognitive factors in L2 listening: metacognitive knowledge (MK) and working memory (WM). Also, to explore the role of VK and SK more fully, the current study accounted for the negative impact of anxiety on WM and L2 listening. The study was carried out in an English as a Foreign Language (EFL) context, and participants were 263 Iranian learners at a wide range of English proficiency from lower-intermediate to advanced. Participants took a battery of ten linguistic, cognitive and affective measures. Then, the collected data were subjected to several preliminary analyses, but structural equation modeling (SEM) was then used as the primary analysis method to answer the study research questions. Results of the preliminary analyses revealed that MK and WM were significant predictors of L2 listening ability; thus, they were kept in the main SEM analyses. The significant role of WM was only observed when the negative effect of anxiety on WM was accounted for. Preliminary analyses also showed that VB and VD were not distinct measures of VK. However, the results also showed that if VB and VD were considered separate, VD was a better predictor of L2 listening success. The main analyses of the current study revealed a significant role for both VK and SK in explaining success in L2 listening comprehension, which differs from findings from previous empirical studies. However, SEM analysis did not reveal a statistically significant difference in terms of the predictive power of the two linguistic factors. Descriptive results of the SEM analysis, along with results from regression analysis, indicated to a more significant role for VK.
Resumo:
Wnt signalling is involved in a wide range of physiological and pathological processes. The presence of an extracellular Wnt stimulus induces cytoplasmic stabilisation and nuclear translocation of beta-catenin, a protein that also plays an essential role in cadherin-mediated adhesion. Two main hypotheses have been proposed concerning the balance between beta-catenin's adhesive and transcriptional functions: either beta-catenin's fate is determined by competition between its binding partners, or Wnt induces folding of beta-catenin into a conformation allocated preferentially to transcription. The experimental data supporting each hypotheses remain inconclusive. In this paper we present a new mathematical model of the Wnt pathway that incorporates beta-catenin's dual function. We use this model to carry out a series of in silico experiments and compare the behaviour of systems governed by each hypothesis. Our analytical results and model simulations provide further insight into the current understanding of Wnt signalling and, in particular, reveal differences in the response of the two modes of interaction between adhesion and signalling in certain in silico settings. We also exploit our model to investigate the impact of the mutations most commonly observed in human colorectal cancer. Simulations show that the amount of functional APC required to maintain a normal phenotype increases with increasing strength of the Wnt signal, a result which illustrates that the environment can substantially influence both tumour initiation and phenotype.
Resumo:
The research aims to answer a fundamental question: which of the disability models currently in use is optimal for creating “accessible tourism-oriented” amenities, as well as more detailed problems: (1) what is disability and what determines different disability models? (2) what types of tourism market supply available for the disabled do the different disability models suggest? (3) are the disability models complementary or mutually exclusive? (4) is the idea of social integration and inclusion of people with disabilities (PWD) while on tourist trips supported of the society? Data sources comprise selected literature and results of a survey conducted using the face-to-face method and the SurveyMonkey website from May 2013 to July 2014. The surveyed group included 619 people (82% were Polish, the other 18% were foreigners from: Russia, Germany, Portugal, Slovakia, Canada, Tunisia and the United Kingdom). The research showed that the different disability models – medical, social, geographical and economic – are useful when creating the tourism supply for the PWD. Using the research results, the authors suggested a model of “diversification of tourism market supply structure available for the disabled”, which includes different types of supply – from specialist to universal. This model has practical usage and can help entrepreneurs with the segmentation of tourism offers addressed to the PWD. The work is innovative, both in its theoretical approach (the review of disability models and their practical application in creating tourism supply) and empirical values – it provides current data for the social attitude towards the development of PWD tourism. Especially the presentation of a wide range of perception of disability as well as the simple classification of tourism supply that meets the varied needs of PWD, is a particular novelty of this chapter.