868 resultados para Vertical crustal motion
Resumo:
Outflowing ions from the polar ionosphere fall into two categories: the classical polar wind and the suprathermal ion flows. The flows in both these categories vary a great deal with altitude. The classical polar wind is supersonic at high altitude: at ∼3 RE geocentric, the observed polar wind is H+ dominated and has a Mach number of 2.5–5.1. At 400–600 km, thermal and suprathermal upward O+ ion fluxes frequently occur at the poleward edge of the nightside auroral oval during magnetically active times. Above 500 km, ions are accelerated transverse to the local geomagnetic field. At 1400 km, transversely accelerated ions are frequently observed in winter nights but rarely appear in the summer. In the dayside cleft above ∼2000 km, ions of all species are transversely heated and upwell with significant number and heat fluxes, forming a cleft ion fountain as they convect across the polar cap. Upwelling ions are observed most (least) frequently in the summer (winter). At yet higher altitudes, energetic (>10 eV to several kiloelectron volts) upflowing H+ and O+ ions are frequently observed, their active time occurrence frequency being as high as 0.7 at auroral latitudes and 0.3 in the polar cap. Their composition, intensity, and angular characteristics vary quantitatively with solar activity, being O+ dominant and more intense near solar maximum. Their resulting ion outflow is dominated by ions below 1 keV and reaches 3.5×10^26 O+ and 7×10^25 H+ ions s^{−1} at magnetically active times (Kp≥5) near solar maximum. In comparison, the estimated polar wind ion outflow at times of moderate solar activity is 7×10^25H+ and 4×10^24 He+ ions s^{−1}. The estimated <10-eV cleft ion fountain flow is 3.8×10^25 O+ and 8.6×10^23 H+ ions s^{−1} near solar maximum.
Resumo:
Data from the Dynamics Explorer 1 satellite and the EISCAT and Sondrestrom incoherent scatter radars, have allowed a study of low-energy ion outflows from the ionosphere into the magnetosphere during a rapid expansion of the polar cap. From the combined radar data, a 200kV increase in cross-cap potential is estimated. The upflowing ions show “X” signatures in the pitch angle-time spectrograms in the expanding midnight sector of the auroral oval. These signatures reveal low-energy (below about 60eV), light-ion beams sandwiched between two regions of ion conics and are associated with inverted-V electron precipitation. The lack of mass dispersion of the poleward edge of the event, despite great differences in the times of flight, reflects the equatorward expansion of the acceleration regions at velocities similar to those of the antisunward convection. In addition, a transient burst of upflow of 0+ is observed within the cap, possibly due to enhanced Joule heating during the event.
Resumo:
Learning to talk about motion in a second language is very difficult because it involves restructuring deeply entrenched patterns from the first language (Slobin 1996). In this paper we argue that statistical learning (Saffran et al. 1997) can explain why L2 learners are only partially successful in restructuring their second language grammars. We explore to what extent L2 learners make use of two mechanisms of statistical learning, entrenchment and pre-emption (Boyd and Goldberg 2011) to acquire target-like expressions of motion and retreat from overgeneralisation in this domain. Paying attention to the frequency of existing patterns in the input can help learners to adjust the frequency with which they use path and manner verbs in French but is insufficient to acquire the boundary crossing constraint (Slobin and Hoiting 1994) and learn what not to say. We also look at the role of language proficiency and exposure to French in explaining the findings.
Resumo:
Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
The classic vertical advection-diffusion (VAD) balance is a central concept in studying the ocean heat budget, in particular in simple climate models (SCMs). Here we present a new framework to calibrate the parameters of the VAD equation to the vertical ocean heat balance of two fully-coupled climate models that is traceable to the models’ circulation as well as to vertical mixing and diffusion processes. Based on temperature diagnostics, we derive an effective vertical velocity w∗ and turbulent diffusivity k∗ for each individual physical process. In steady-state, we find that the residual vertical velocity and diffusivity change sign in mid-depth, highlighting the different regional contributions of isopycnal and diapycnal diffusion in balancing the models’ residual advection and vertical mixing. We quantify the impacts of the time-evolution of the effective quantities under a transient 1%CO2 simulation and make the link to the parameters of currently employed SCMs.
Resumo:
Many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of three components of a model-evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20-day hindcasts, initialised daily during two MJO events in winter 2009-10. The 13 models exhibit a range of skill: several have accurate forecasts to 20 days' lead, while others perform similarly to statistical models (8-11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic-heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to mid-level moistening at moderate rainfall and upper-level moistening for heavy rainfall. The mid-level moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary, but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.
Resumo:
The "Vertical structure and physical processes of the Madden-Julian oscillation (MJO)" project comprises three experiments, designed to evaluate comprehensively the heating, moistening and momentum associated with tropical convection in general circulation models (GCMs). We consider here only those GCMs that performed all experiments. Some models display relatively higher or lower MJO fidelity in both initialized hindcasts and climate simulations, while others show considerable variations in fidelity between experiments. Fidelity in hindcasts and climate simulations are not meaningfully correlated. The analysis of each experiment led to the development of process-oriented diagnostics, some of which distinguished between GCMs with higher or lower fidelity in that experiment. We select the most discriminating diagnostics and apply them to data from all experiments, where possible, to determine if correlations with MJO fidelity hold across scales and GCM states. While normalized gross moist stability had a small but statistically significant correlation with MJO fidelity in climate simulations, we find no link with fidelity in medium-range hindcasts. Similarly, there is no association between timestep-to-timestep rainfall variability, identified from short hindcasts, and fidelity in medium-range hindcasts or climate simulations. Two metrics that relate precipitation to free-tropospheric moisture--the relative humidity for extreme daily precipitation, and variations in the height and amplitude of moistening with rain rate--successfully distinguish between higher- and lower-fidelity GCMs in hindcasts and climate simulations. To improve the MJO, developers should focus on relationships between convection and both total moisture and its rate of change. We conclude by offering recommendations for further experiments.
Resumo:
Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one-fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models, but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high and low rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.
Resumo:
An analysis of diabatic heating and moistening processes from 12-36 hour lead time forecasts from 12 Global Circulation Models are presented as part of the "Vertical structure and physical processes of the Madden-Julian Oscillation (MJO)" project. A lead time of 12-36 hours is chosen to constrain the large scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up for the models as they adjust to being driven from the YOTC analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests that the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated. Although the large scale dynamics is reasonably constrained, moistening and heating profiles have large inter-model spread. In particular, there are large spreads in convective heating and moistening at mid-levels during the transition to active convection. Radiative heating and cloud parameters have the largest relative spread across models at upper levels during the active phase. A detailed analysis of time step behaviour shows that some models show strong intermittency in rainfall and differences in the precipitation and dynamics relationship between models. The wealth of model outputs archived during this project is a very valuable resource for model developers beyond the study of the MJO. In addition, the findings of this study can inform the design of process model experiments, and inform the priorities for field experiments and future observing systems.
Resumo:
A sequential extraction method was utilized to analyze seven forms of P in an integrated vertical-flow constructed wetland (IVFCW) containing earthworms and different substrates. The aluminum-bound P (Al-P) content was found to be lower, and the occluded P (Oc-P) content was higher in the IVFCW. The addition of earthworms into the influent chamber of IVFCW increased the exchange P (Ex-P), iron-bound P (Fe-P), calcium bound P (Ca-P), Oc-P, detritus-bound (De-P) and organic P (Org-P) content in the influent chamber, and also enhanced P content uptake by wetland plants. A significantly positive correlation between P content of above-ground wetland plants and the Ex-P, Fe-P, Oc-P and Org-P content in the rhizosphere was found (P < 0.05), which indicated that the Ex-P, Fe-P, Oc-P and Org-P could be bio-available P. The Ex-P, Fe-P, De-P, Oc-P and Ca-P content of the influent chamber was higher where the substrate contained a mixture of Qing sand and river sand rather than only river sand. Also the IVFCW with earthworms and both Qing sand and river sand had a higher removal efficiency of P, which was related to higher P content uptake by wetland plants and P retained in IVFCW. These findings suggest that addition of earthworms in IVFCW increases the bioavailable P content, resulting in enhanced P content uptake by wetland plants.
Resumo:
Weather and climate model simulations of the West African Monsoon (WAM) have generally poor representation of the rainfall distribution and monsoon circulation because key processes, such as clouds and convection, are poorly characterized. The vertical distribution of cloud and precipitation during the WAM are evaluated in Met Office Unified Model simulations against CloudSat observations. Simulations were run at 40-km and 12-km horizontal grid length using a convection parameterization scheme and at 12-km, 4-km, and 1.5-km grid length with the convection scheme effectively switched off, to study the impact of model resolution and convection parameterization scheme on the organisation of tropical convection. Radar reflectivity is forward-modelled from the model cloud fields using the CloudSat simulator to present a like-with-like comparison with the CloudSat radar observations. The representation of cloud and precipitation at 12-km horizontal grid length improves dramatically when the convection parameterization is switched off, primarily because of a reduction in daytime (moist) convection. Further improvement is obtained when reducing model grid length to 4 km or 1.5 km, especially in the representation of thin anvil and mid-level cloud, but three issues remain in all model configurations. Firstly, all simulations underestimate the fraction of anvils with cloud top height above 12 km, which can be attributed to too low ice water contents in the model compared to satellite retrievals. Secondly, the model consistently detrains mid-level cloud too close to the freezing level, compared to higher altitudes in CloudSat observations. Finally, there is too much low-level cloud cover in all simulations and this bias was not improved when adjusting the rainfall parameters in the microphysics scheme. To improve model simulations of the WAM, more detailed and in-situ observations of the dynamics and microphysics targeting these non-precipitating cloud types are required.
Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach
Resumo:
Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.
Resumo:
Virtual Reality (VR) can provide visual stimuli for EEG studies that can be altered in real time and can produce effects that are difficult or impossible to reproduce in a non-virtual experimental platform. As part of this experiment the Oculus Rift, a commercial-grade, low-cost, Head Mounted Display (HMD) was assessed as a visual stimuli platform for experiments recording EEG. Following, the device was used to investigate the effect of congruent visual stimuli on Event Related Desynchronisation (ERD) due to motion imagery.
Resumo:
Verbal communication is essential for human society and human civilization. Non-verbal communication, on the other hand, is more widely used not only by human but also other kind of animals, and the content of information is estimated even larger than the verbal communication. Among the non-verbal communication mutual motion is the simplest and easiest to study experimentally and analytically. We measured the power spectrum of the hand velocity in various conditions and clarified the following points on the feed-back and feed- forward mechanism as basic knowledge to understand the condition of good communication.