913 resultados para Vacuum Packaging
Resumo:
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.
Resumo:
The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.
Resumo:
Following the method of Ioffe and Smilga, the propagation of the baryon current in an external constant axial-vector field is considered. The close similarity of the operator-product expansion with and without an external field is shown to arise from the chiral invariance of gauge interactions in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon and the hyperons are derived. The analysis of the sum rules is carried out by two independent methods, one called the ratio method and the other called the continuum method, paying special attention to the nondiagonal transitions induced by the external field between the ground state and excited states. Up to operators of dimension six, two new external-field-induced vacuum expectation values enter the calculations. Previous work determining these expectation values from PCAC (partial conservation of axial-vector current) are utilized. Our determination from the sum rules of the nucleon axial-vector renormalization constant GA, as well as the Cabibbo coupling constants in the SU3-symmetric limit (ms=0), is in reasonable accord with the experimental values. Uncertainties in the analysis are pointed out. The case of broken flavor SU3 symmetry is also considered. While in the ratio method, the results are stable for variation of the fiducial interval of the Borel mass parameter over which the left-hand side and the right-hand side of the sum rules are matched, in the continuum method the results are less stable. Another set of sum rules determines the value of the linear combination 7F-5D to be ≊0, or D/(F+D)≊(7/12). .AE
Resumo:
The AISI 4340 steel has been electroslag refined and the improvement in mechanical properties has been assessed. Electroslag refining (ESR) has improved tensile ductility, plane strain fracture toughness, Charpy fracture energy, and has decreased fatigue crack growth rates. The KIC values for the ESR steel are nearly twice those estimated in the unrefined steel and higher than those obtained in the vacuum arc remelted steel. Fatigue crack growth rates in region I and in region III are found to be decreased considerably in the ESR steel, while they are unaffected in region II. Measurements on heat treated samples have shown that the ESR steel has a better response to heat treatment. Both the suggested heat treatments namely austenitizing at 1140–1470 K as well as the conventional heat treatment of austenitizing at 1140 K have been followed. The improvement in the mechanical properties of ESR steel has been explained on the basis of removal of nonmetallic inclusions and reduction in sulfur content in the steel.
Resumo:
The kinetics of decomposition of the carbonate Sr2Zr2O5CO3, are greatly influenced by the thermal effects during its formation. (α−t) curves are found to be sigmoidal and they could be analysed based on power law equations followed by first-order decay. The presence of carbon in the vacuum-prepared sample of carbonate has a strong deactivating effect. The carbonate is fairly crystalline and its decomposition leads to the formation of crystalline strontium zirconate.
Resumo:
Ethylene production is stimulated during the slicing of fresh cut tomato slices. Experiments were conducted to investigate whether the inclusion of ethylene absorbents in packaging affects the quality of tomato slices cv. Revolution during storage at 5OC. ‘Pink’ maturity stage tomatoes were cut into 7mm thick slices and vertically stacked in closed glass containers for 12 days with or without Purafil® to remove ethylene. The ethylene removal treatment resulted in reduced ethylene, less CO2 accumulation, and firmer slices.
Resumo:
Introduction Climate change has been described as the most significant global health threat of the 21st century. Already, negative impacts on human health and wellbeing are being observed. These impacts present enormous challenges for the healthcare sector and the time has come for healthcare professionals to demonstrate leadership in addressing these challenges. Since any unsustainable organizational practices of healthcare organisations may ultimately have a negative impact on human health, there is an implicit moral obligation for these organisations and the people who work in them, to deliver healthcare more sustainably. If one considers that in 2010 pharmaceuticals comprised 22% of the carbon footprint of the NHS England (equating to 4.4 million tonnes of CO2 emissions) and 3% of England’s total carbon footprint (NHS Sustainable Development Unit, 2012), by reducing the carbon footprint of pharmaceuticals used in their healthcare organisations, pharmacists can have a significant impact on reducing the organisation’s total carbon footprint and ultimately on the public’s health. Aims The engagement of pharmacists with sustainability initiatives in the workplace has been largely unreported in international and national pharmacy journals. This paper aims to highlight the important role that pharmacists can play in helping to reduce the carbon footprint of healthcare delivery. Methods Literature was reviewed to identify areas where pharmacists could influence the more sustainable use of pharmaceuticals in their organisations. Discussion Much of the carbon footprint of pharmaceuticals is embedded carbon from their manufacture and delivery. Through efficient inventory management practices, pharmacists can reduce the number of orders and potentially reduce the number of deliveries required. Pharmacists can also help to reduce the amount of pharmaceutical waste generated. Of the waste that is generated, they can help improve the segregation of waste streams to increase the amount of non-contaminated packaging waste that is recycled and reduce the amount of pharmaceutical waste being incinerated or ending up in landfill. Reference NHS Sustainable Development Unit. (2012). Sustainability in the NHS Health Check 2012. NHS Sustainable Development Unit. Cambridge, UK: NHS Sustainable Devlopment Unit.
Resumo:
Queensland pineapple production for the year ending 31 March, 1986, was 142000 t (ABS 1988). Pineapple juice provides the major processing outlet, accounting for about 70% of the State's fruit juice output. Most juice is concentrated by vacuum evaportion to reduce storage and transport costs. In recent years, reverse osmosis (R.O.) has found increasing application for concentrating food liquids, particularly dairy products (Schmidt, 1987). Advantages include lower energy consumption and better product quality retention. There have been a number of publications on fruit juice concentration by R.O. These have included apple juice (Sheu and Wiley 1984; Chua et al 1987; Paulson 1985), orange juice (Papanicolaou et al 1984), mandarin juice (Fukutani and Ogawa 1983, tomato juice (Robe 1983; Watanabe 1982; Gheradi et al 1986), grapefruit and lemon juices (Braddock et al 1988). However, information on pineapple juice concentration by R.O. is lacking. The aim of this research was to measure the effects of juice pre-treatment, operating temperature, membrane type, flow rate, pressure and degree of concentration on pineapple juice R.O.
Resumo:
Aseptic processing involves sterilising the product and package separately, and filling under sterile conditions. Advantages include better product quality compared with canned products, lower transport and storage costs compared with frozen products, and virtually no restriction on package size. Problems include ensuring adequate heat penetration into the particles to ensure sterility, preventing separation of particles from the carrier liquid, and retention of particle structure and shape. Particulate foods can be sterilised in scraped - surface heat exchangers. Other methods involve heating the particles separately, and combining them during filling. Projects will commence at the International Food Institute of Queensland (IFIQ) on aseptic packaging of a meat and vegetable product, and aseptically packaged mango pieces.
Resumo:
The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to 't Hooft's criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all the naturalness-violating effects associated with scalar fields, and (ii) composite structure of the scalar fields, which starts showing up at energy scales where unnatural effects would otherwise have appeared. With reference to the second solution, this article reviews the case for dynamical breaking of the gauge symmetry and the technicolor scheme for the composite Higgs boson. This new interaction, of the scaled-up quantum chromodynamic type, keeps the new set of fermions, the technifermions, together in the Higgs particles. It also provides masses for the electroweak gauge bosons W± and Z0 through technifermion condensate formation. In order to give masses to the ordinary fermions, a new interaction, the extended technicolor interaction, which would connect the ordinary fermions to the technifermions, is required. The extended technicolor group breaks down spontaneously to the technicolor group, possibly as a result of the "tumbling" mechanism, which is discussed here. In addition, the author presents schemes for the isospin breaking of mass matrices of ordinary quarks in the technicolor models. In generalized technicolor models with more than one doublet of technifermions or with more than one technicolor sector, we have additional low-lying degrees of freedom, the pseudo-Goldstone bosons. The pseudo-Goldstone bosons in the technicolor model of Dimopoulos are reviewed and their masses computed. In this context the vacuum alignment problem is also discussed. An effective Lagrangian is derived describing colorless low-lying degrees of freedom for models with two technicolor sectors in the combined limits of chiral symmetry and large number of colors and technicolors. Finally, the author discusses suppression of flavor-changing neutral currents in the extended technicolor models.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
The properties of Alfven surface waves along a cylindrical plasma column surrounded by vacuum or by another plasma medium are discussed. Both symmetric (m=0) and asymmetric (m=+or-1) modes are found to be dispersive in nature. The interfacial symmetric modes propagate in a certain frequency window ( omega A1, omega As), where omega As is the Alfven surface wave frequency along the interface of two semi-infinite media; when nu A1> nu A2 these modes propagate as backward waves and when nu A1< nu A2 as forward waves. The asymmetric modes change from backward to forward waves at a critical wave number kTr approximately=1.59/a when nu A1< nu A2 or vice versa when nu A1> nu A2.
Resumo:
A low cost 12 T pulsed magnet system has been integrated with a closed-cycle helium refrigerator. The copper solenoid is directly immersed in liquid nitrogen for reduced electrical resistance and more efficient heat transfer. This ensures a minimal delay of few minutes between pulses. The sample is mounted on the cold finger of the refrigerator and, along with the surrounding vacuum shroud, is inserted into the bore of the solenoid. When combined with software lock-in signal processing to reduce noise, quick but accurate measurements can be performed at temperatures 4 K-300 K up to 12 T. Quantum Hall effect data in a p-channel SiGe/Si heterostructure has been used to calibrate the instrument against a commercial superconducting magnet. Its versatility as a routine characterization tool is demonstrated bymeasuring parallel conduction in Si/SiGe modulation doped heterostructures.
Resumo:
The firing and delay characteristics of a simple coaxial type of triggered vacuum gap (TVG) are described and compared with the planar type. The designs are new and differ from those reported earlier. By analogy with gaseous breakdown the statistical and formative time lags have been determined.
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemical composition of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition (particles above 50 nm in vacuum aerodynamic diameter) and PNSD (particles within 9-414 nm in mobility diameter), respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two of the sites. The NPF events happened on relatively warmer days with lower condensation sink (CS). Temporal percent fractions of organics increased after the particles grew enough to have a significant contribution to particles volume, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. K-means cluster analysis was performed on f44 vs f43 data and it was found that they follow different patterns on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be potentially used as a tool for source apportionment of measured particles.