960 resultados para VNTR POLYMORPHISM
Resumo:
The functional catechol-O-methyltransferase (COMT Val108/158Met) polymorphism has been shown to have an impact on tasks of executive function, memory and attention and recently, tasks with an affective component. As oestrogen reduces COMT activity, we focused on the interaction between gender and COMT genotype on brain activations during an affective processing task. We used functional MRI (fMRI) to record brain activations from 74 healthy subjects who engaged in a facial affect recognition task; subjects viewed and identified fearful compared to neutral faces. There was no main effect of the COMT polymorphism, gender or genotypegender interaction on task performance. We found a significant effect of gender on brain activations in the left amygdala and right temporal pole, where females demonstrated increased activations over males. Within these regions, Val/Val carriers showed greater signal magnitude compared to Met/Met carriers, particularly in females. The COMT Val108/158Met polymorphism impacts on gender-related patterns of activation in limbic and paralimbic regions but the functional significance of any oestrogen-related COMT inhibition appears modest. Copyright © 2008 CINP.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. The X-linked MAOA gene is characterized by an allelic variant of length, the MAOA upstream Variable Number Tandem Repeat (MAOA-uVNTR) region polymorphism. Two allelic variants of this gene are known, the high-activity MAOA (HAM) and low-activity MAOA (LAM). We investigated the role of MAOA-uVNTR in cortical pain processing in a group of healthy individuals measured by the trigeminal electric pain-related evoked potential (tPREP) elicited by repeated painful stimulation. A group of healthy volunteers was genotyped to detect MAOA-uVNTR polymorphism. Electrical tPREPs were recorded by stimulating the right supraorbital nerve with a concentric electrode. The N2 and P2 component amplitude and latency as well as the N2-P2 inter-peak amplitude were measured. The recording was divided into three blocks, each containing 10 consecutive stimuli and the N2-P2 amplitude was compared between blocks. Of the 67 volunteers, 37 were HAM and 30 were LAM. HAM subjects differed from LAM subjects in terms of amplitude of the grand-averaged and first-block N2-P2 responses (HAM>LAM). The N2-P2 amplitude decreased between the first and third block in HAM subjects but not LAM subjects. The MAOA-uVNTR polymorphism seemed to influence the brain response in a repeated tPREP paradigm and suggested a role of the MAOA as a modulator of neural plasticity related to cortical pain processing. Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Resumo:
Microvariant allelic polymorphisms have been known since 1966 when Harris, Hubby and Lewontin described the huge store of genetic variation detectable at the polypeptide level. Later Jeffreys used MVR (minisatellite variant repeat) analysis to describe the variation hidden within minisatellite VNTRs and to propose a mutational mechanism.^ The questions I have asked follow these traditions: (1) How much microvariant polymorphism exists at the discrete allele minisatellite D1S80 locus? (2) Do alleles or groups of alleles associate randomly with the flanking markers to form haplotypes? (3) What mechanisms might explain mutations at this locus? What are the phylogenetic relationships among the alleles?^ The minisatellite locus D1S80 (1p35-36), GenBank sequence (Accession # D28507), is a highly polymorphic Variable Number of Tandem Repeat (VNTR) based on a 16 base core. D1S80 alleles are electrophoretically separable into discontinuous sets of equivalent length alleles. Sequence variation or minor length variation within these classes was expected: I have sought to determine the nature of this microvariant heterogeneity by sequencing nominal and variant alleles.^ Alleles were analyzed by Single-Strand Conformation Polymorphism (SSCP) analysis. Sequences were determined to ascertain whether sequence variation or size variation is the major cause of altered electrophoretic migration of microvariant D1S80 alleles. Twenty three alleles from 14 previously typed individuals were sequenced. The individuals were from African American, Caucasian, or Hispanic databases.^ A Tsp509 I restriction site, previously reported as a Hinf I flanking polymorphism, and a 3$\sp\prime$ flanking region BsoF I restriction site polymorphism were identified. There appears to be a strong association of the 5$\sp\prime$ flanking region Hinf I(+) and Tsp509 I(-) site and the 3$\sp\prime$ flanking region BsoF I(-) site with the 18 allele, while the 24 tends to be associated with the Hinf I(-), Tsp509 I(+) and BsoF I(+) sites.^ The general conclusion for this locus is clearly the closer you look, the more you find. D1S80 allelic polymorphisms are primarily due to variation in the number of repeat units and to sequence variation among repeats. The sequenced based gene tree depicts two major classes of alleles which conform to the two most common alleles, reflecting either equivalent age or population size bottlenecks. ^
Resumo:
Peer reviewed
Resumo:
Funding Silvia S. Monteiro and Marisa Ferreira were supported by a Ph.D. grant from Fundação para a Ciência e Tecnologia (ref SFRH/BD/38735/2007 and SFRH/BD/30240/2006, respectively). Alfredo López was supported by a postdoctoral grant from Fundação para a Ciência e Tecnologia (ref SFRH/BPD/82407/2011). Catarina Eira is supported by CESAM (UID/AMB/50017), from FCT/MEC through national funds and FEDER (PT2020, Compete 2020). The work related with strandings and tissue collection in Portugal was partially supported by the SafeSea Project EEAGrants PT 0039 (supported by Iceland, Liechtenstein and Norway through the EEA Financial Mechanism), by the Project MarPro–Life09 NAT/PT/000038 (funded by the European Union–Program Life+) and by the project CetSenti FCT RECI/AAG-GLO/0470/2012; FCOMP-01-0124-FEDER-027472 (Funded by the Program COMPETE and Fundação para a Ciência e Tecnologia).
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
v. 45, n.2, p.152-160, abr/.jun. 2016.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Antineoplastic drugs are hazardous chemical agents used mostly in the treatment of patients with cancer, however health professionals that handle and administer these drugs can become exposed and develop DNA damage. Comet assay is a standard method for assessing DNA damage in human biomonitoring and, combined with formamidopyrimidine DNA glycosylase (FPG) enzyme, it specifically detects DNA oxidative damage. The aim of this study was to investigate genotoxic effects in workers occupationally exposed to cytostatics (n = 46), as compared to a control group with no exposure (n = 46) at two Portuguese hospitals, by means of the alkaline comet assay. The potential of the OGG1 Ser326Cys polymorphism as a susceptibility biomarker was also investigated. Exposure was evaluated by investigating the contamination of surfaces and genotoxic assessment was done by alkaline comet assay in peripheral blood lymphocytes. OGG1 Ser326Cys (rs1052133) polymorphism was studied by Real Time PCR. As for exposure assessment, there were 121 (37%) positive samples out of a total of 327 samples analysed from both hospitals. No statistically significant differences (Mann-Whitney test, p > 0.05) were found between subjects with and without exposure, regarding DNA damage and oxidative DNA damage, nevertheless the exposed group exhibited higher values. Moreover, there was no consistent trend regarding the variation of both biomarkers as assessed by comet assay with OGG1 polymorphism. Our study was not statistically significant regarding occupational exposure to antineoplastic drugs and genetic damage assessed by comet assay. However, health professionals should be monitored for risk behaviour, in order to ensure that safety measures are applied and protection devices are used correctly.
Resumo:
The development of molecular markers for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here our identification of thousands of unambiguous molecular markers that can be easily assayed across genotypes of the species. With origin centered in Southeast Asia, mangos are grown throughout the tropics and subtropics as a nutritious fruit that exhibits remarkable intraspecific phenotypic diversity. With the goal of building a high density genetic map, we have undertaken discovery of sequence variation in expressed genes across a broad range of mango cultivars. A transcriptome sequence reference was built de novo from extensive sequencing and assembly of RNA from cultivar 'Tommy Atkins'. Single nucleotide polymorphisms (SNPs) in protein coding transcripts were determined from alignment of RNA reads from 24 mango cultivars of diverse origins: 'Amin Abrahimpur' (India), 'Aroemanis' (Indonesia), 'Burma' (Burma), 'CAC' (Hawaii), 'Duncan' (Florida), 'Edward' (Florida), 'Everbearing' (Florida), 'Gary' (Florida), 'Hodson' (Florida), 'Itamaraca' (Brazil), 'Jakarata' (Florida), 'Long' (Jamaica), 'M. Casturi Purple' (Borneo), 'Malindi' (Kenya), 'Mulgoba' (India), 'Neelum' (India), 'Peach' (unknown), 'Prieto' (Cuba), 'Sandersha' (India), 'Tete Nene' (Puerto Rico), 'Thai Everbearing' (Thailand), 'Toledo' (Cuba), 'Tommy Atkins' (Florida) and 'Turpentine' (West Indies). SNPs in a selected subset of protein coding transcripts are currently being converted into Fluidigm assays for genotyping of mapping populations and germplasm collections. Using an alternate approach, SNPs (144) discovered by sequencing of candidate genes in 'Kensington Pride' have already been converted and used for genotyping.
Resumo:
Kidney transplantation has been recognised as the optimal treatment choice for most end stage renal disease patients and the increase of allograft survival rates is achieved through the refinement of novel immunosuppressive agents. Chronic Graft Disease (CGD) is a multifactorial process that likely includes a combination of immunological, apoptotic and inflammatory factors. The application of individualised immunosuppressive therapies will also depend on the identification of risk factors that can influence chronic disease. Despite being the subject of several independent studies, investigations of the relationship between transforming growth factor-b1 (TGF-b1) polymorphisms and kidney graft outcome continue to be plagued by contradictory conclusions.
Resumo:
Rotavirus double-stranded RNA was detected directly in sewage treatment plant samples over a 1-year period by reverse transcription followed by PCR amplification of the VP7 gene and Southern blot hybridization. The presence of naturally occurring rotaviruses was demonstrated in 42% of raw sewage samples and in 67% of treated effluent samples, Amplified viral sequences were analyzed bg restriction enzymes. Ten different restriction profiles were characterized, most of which were found in treated effluent samples. A mixture of restriction profiles was observed in 75% of contaminated effluent samples, The profiles were compared with those obtained from human rotavirus isolates involved in infections in children from the same area (six different profiles were detected), Five identical viral sequences were detected in both environmental and clinical samples, Restriction profiles sere also compared io profiles from known genomic sequences of human and animal viruses. Both human and animal origins of rotavirus contamination of water seemed likely.