995 resultados para VARIANT PROTEINS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During mitotic cell division, the genetic material packed into chromosomes is divided equally between two daughter cells. Before the separation of the two copies of a chromosome (sister chromatids), each chromosome has to be properly connected with microtubules of the mitotic spindle apparatus and aligned to the centre of the cell. The spindle assembly checkpoint (SAC) monitors connections between microtubules and chromosomes as well as tension applied across the centromere. Microtubules connect to a chromosome via kinetochores, which are proteinaceous organelles assembled onto the centromeric region of the sister chromatids. Improper kinetochore-microtubule attachments activate the SAC and block chromosome segregation until errors are corrected and all chromosomes are connected to the mitotic spindle in a bipolar manner. The purpose of this surveillance mechanism is to prevent loss or gain of chromosomes in daughter cells that according to current understanding contributes to cancer formation. Numerous proteins participate in the regulation of mitotic progression. In this thesis, the mitotic tasks of three kinetochore proteins, Shugoshin 1 (Sgo1), INCENP, and p38 MAP kinase (p38 MAPK), were investigated. Sgo1 is a protector of centromeric cohesion. It is also described in the tension-sensing mechanism of the SAC and in the regulation of kinetochore-microtubule connections. Our results revealed a central role for Sgo1 in a novel branch of kinetochore assembly. INCENP constitutes part of the chromosomal passenger complex (CPC). The other members of the core complex are the Aurora B kinase, Survivin and Borealin. CPC is an important regulatory element of cell division having several roles at various stages of mitosis. Our results indicated that INCENP and Aurora B are highly dynamic proteins at the mitotic centromeres and suggested a new role for CPC in regulation of chromosome movements and spindle structure during late mitosis. The p38 MAPK has been implicated in G1 and G2 checkpoints during the cell cycle. However, its role in mitotic progression and control of SAC signaling has been controversial. In this thesis, we discovered a novel function for p38γ MAPK in chromosome orientation and spindle structure as well as in promotion of viability of mitotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolates of Colletotrichum gloeosporioides (ISO-1, ISO-2, ISO-3, ISO-4, ISO-5 and ISO-6), the causal agent of anthracnose disease on mango fruits, were characterized by electrophoretic patterns of total proteins and esterase in polyacrylamida gel, and also, by production of extracellular enzymes on specific solid substrate. The electrophoretic analysis showed variation in number, intensity of coloration and position of the bands in the gel at each studied system tested. In contrast to the monomorphic behavior to total proteins, high esterase polymorfism was observed indicating difference among isolates. All isolates showed the activity of extracellular enzymes such as amylase, lipase, and protease with some variation among them. The proteolitic activity seemed to be more accentuated than the two other enzymes studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New luminometric particle-based methods were developed to quantify protein and to count cells. The developed methods rely on the interaction of the sample with nano- or microparticles and different principles of detection. In fluorescence quenching, timeresolved luminescence resonance energy transfer (TR-LRET), and two-photon excitation fluorescence (TPX) methods, the sample prevents the adsorption of labeled protein to the particles. Depending on the system, the addition of the analyte increases or decreases the luminescence. In the dissociation method, the adsorbed protein protects the Eu(III) chelate on the surface of the particles from dissociation at a low pH. The experimental setups are user-friendly and rapid and do not require hazardous test compounds and elevated temperatures. The sensitivity of the quantification of protein (from 40 to 500 pg bovine serum albumin in a sample) was 20-500-fold better than in most sensitive commercial methods. The quenching method exhibited low protein-to-protein variability and the dissociation method insensitivity to the assay contaminants commonly found in biological samples. Less than ten eukaryotic cells were detected and quantified with all the developed methods under optimized assay conditions. Furthermore, two applications, the method for detection of the aggregation of protein and the cell viability test, were developed by utilizing the TR-LRET method. The detection of the aggregation of protein was allowed at a more than 10,000 times lower concentration, 30 μg/L, compared to the known methods of UV240 absorbance and dynamic light scattering. The TR-LRET method was combined with a nucleic acid assay with cell-impermeable dye to measure the percentage of dead cells in a single tube test with cell counts below 1000 cells/tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases) are essential enzymes for every living cell. PPases provide the necessary thermodynamic pull for many biosynthetic reactions by hydrolyzing pyrophosphate. There are two types of PPases: integral membrane-bound and soluble enzymes. The latter type is divided into two non-homologous protein families, I and II. Family I PPases are present in all kingdoms of life, whereas family II PPases are only found in prokaryotes, including archae. Family I PPases, particularly that from Saccharomyces cerevisiae, are among the most extensively characterized phosphoryl transfer enzymes. In the present study, we have solved the structures of wild-type and seven active site variants of S. cerevisiae PPase bound to its natural metal cofactor, magnesium ion. These structures have facilitated derivation of the complete enzyme reaction scheme for PPase, fulfilling structures of all the reaction intermediates. The main focus in this study was on a novel subfamily of family II PPases (CBSPPase) containing a large insert formed by two CBS domains and a DRTGG domain within the catalytic domain. The CBS domain (named after cystathionine beta-synthase in which it was initially identified) usually occurs as tandem pairs with two or four copies in many proteins in all kingdoms of life. The structure formed by a pair of CBS domains is also known as a Bateman domain. CBS domains function as regulatory units, with adenylate ligands as the main effectors. The DRTGG domain (designated based on its most conserved residues) occurs less frequently and only in prokaryotes. Often, the domain co-exists with CBS domains, but its function remains unknown. The key objective of the current study was to explore the structural rearrangements in the CBS domains induced by regulatory adenylate ligands and their functional consequences. Two CBS-PPases were investigated, one from Clostridium perfringens (cpCBS-PPase) containing both CBS and DRTGG domains in its regulatory region and the other from Moorella thermoacetica (mt CBS-PPase) lacking the DRTGG domain. We additionally constructed a separate regulatory region of cpCBS-PPase (cpCBS). Both full-length enzymes and cpCBS formed homodimers. Two structures of the regulatory region of cpCBS-PPase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate, were solved. The structures were significantly different, providing information on the structural pathway from bound adenylates to the interface between the regulatory and catalytic parts. To our knowledge, these are the first reported structures of a regulated CBS enzyme, which reveal large conformational changes upon regulator binding. The activator-bound structure was more open, consistent with the different thermostabilities of the activator- and inhibitor-bound forms of cpCBS-PPase. The results of the functional studies on wild-type and variant CBS-PPases provide support for inferences made on the basis of structural analyses. Moreover, these findings indicate that CBS-PPase activity is highly sensitive to adenine nucleotide distribution between AMP, ADP and ATP, and hence to the energy level of the cell. CBS-PPase activity is markedly inhibited at low energy levels, allowing PPi energy to be used for cell survival instead of being converted into heat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large biodiversity of cyanobacteria together with the increasing genomics and proteomics metadata provide novel information for finding new commercially valuable metabolites. With the advent of global warming, there is growing interest in the processes that results in efficient CO2 capture through the use of photosynthetic microorganisms such as cyanobacteria. This requires a detailed knowledge of how cyanobacteria respond to the ambient CO2. My study was aimed at understanding the changes in the protein profile of the model organism, Synechocystis PCC 6803 towards the varying CO2 level. In order to achieve this goal I have employed modern proteomics tools such as iTRAQ and DIGE, recombinant DNA techniques to construct different mutants in cyanobacteria and biophysical methods to study the photosynthetic properties. The proteomics study revealed several novel proteins, apart from the well characterized proteins involved in carbon concentrating mechanisms (CCMs), that were upregulated upon shift of the cells from high CO2 concentration (3%) to that in air level (0.039%). The unknown proteins, Slr0006 and flavodiiron proteins (FDPs) Sll0217-Flv4 and Sll0219-Flv2, were selected for further characterization. Although slr0006 was substantially upregulated under Ci limiting conditions, inactivation of the gene did not result in any visual phenotype under various environmental conditions indicating that this protein is not essential for cell survival. However, quantitative proteomics showed the induction of novel plasmid and chromosome encoded proteins in deltaslr0006 under air level CO2 conditions. The expression of the slr0006 gene was found to be strictly dependent on active photosynthetic electron transfer. Slr0006 contains conserved dsRNA binding domain that belongs to the Sua5/YrdC/YciO protein family. Structural modelling of Slr0006 showed an alpha/beta twisted open-sheet structure and a positively charged cavity, indicating a possible binding site for RNA. The 3D model and the co-localization of Slr0006 with ribosomal subunits suggest that it might play a role in translation or ribosome biogenesis. On the other hand, deletions in the sll0217-sll218- sll0219 operon resulted in enhanced photodamage of PSII and distorted energy transfer from phycobilisome (PBS) to PSII, suggesting a dynamic photoprotection role of the operon. Constructed homology models also suggest efficient electron transfer in heterodimeric Flv2/Flv4, apparently involved in PSII photoprotection. Both Slr0006 and FDPs exhibited several common features, including negative regulation by NdhR and ambiguous cellular localization when subjected to different concentrations of divalent ions. This strong association with the membranes remained undisturbed even in the presence of detergent or high salt. My finding brings ample information on three novel proteins and their functions towards carbon limitation. Nevertheless, many pathways and related proteins remain unexplored. The comprehensive understanding of the acclimation processes in cyanobacteria towards varying environmental CO2 levels will help to uncover adaptive mechanisms in other organisms, including higher plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipider är viktiga biomolekyler, eftersom de bygger upp alla cellulära membran. Glykolipider, dvs. lipider som innehåller socker, är dessutom betydelsefulla som signaleringsmolekyler vid olika processer. Det är essentiellt att regleringen av syntesen, nedbrytningen samt transporten av lipider i cellen är noggrant koordinerade, och faktorer som kan påverka lipidmetabolismen är därför viktiga att undersöka. Denna avhandling har undersökt två olika lipidbindande proteiner, glykolipidtransportprotein (GLTP) och ceramidtransportprotein (CERT). GLTPs biologiska funktion är ännu oklar, dock vet man att GLTP har förmåga att binda olika glykolipider samt överföra dessa lipider mellan olika lipidmembraner. CERT har däremot visats kunna transportera ceramid från det endoplastiska retiklet (ER) till Golgi-apparaten, för produktion av sfingomyelin. I detta avhandlingsarbete undersöktes lokaliseringen av GLTP i celler med olika metoder, bl.a. konfokalmikroskopi, samt olika centrifugeringsmetoder. Genom att överuttrycka GLTP i celler och därefter analysera halten nysyntetiserade glykolipider, kunde även sambandet mellan GLTP-uttrycket och dessa lipider undersökas. I avhandlingen identifierades ytterligare en specifik aminosyrasekvens hos GLTP. Denna sekvens visades kunna binda till VAP-A, ett integralt ER protein, med en tidigare fastställd viktig funktion vid regleringen av lipidtransporten. I avhandlingen analyserades även hur ceramidtransporten mellan två olika membraner, medierad av CERT, påverkas av egenskaper i ceramidens omgivning. För att undersöka detta användes artificiella modellmembraner samt fluorimetriska metoder. Sammansättningen och packningen hos lipidmembranerna visades ha en stor betydelse för den CERT-katalyserade ceramidtransporten. Sammanfattningsvis antyder resultaten från avhandlingen att det existerar flera faktorer som kan påverka aktiviteten av GLTP och CERT, vilka i sin tur har förmåga att reglera lipidmetabolismen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pythiosis is caused by Pythium insidiosum and the occurrence of disease in horses was described in the North and Northwest State of Rio de Janeiro, Brazil. The disease was described in cattle, sheep, humans, and horses in different states and regions across the country. This paper describes the development of IgY and IgG polyclonal antibodies, in chicken and rabbits, respectively against proteins extracted from kunkers and hyphae of P. insidiosum from affected horses. The proteins were recognized by chicken, rabbit and horse antibodies by immunodiffusion and Western blot against majority bands of 27 and 43 KDa, and titrated by ELISA. The antibodies IgY developed by the first time against Brazilian strains of P. insidiosum may represent a valuable tool in the detection of antigens of the pathogen and contribute to further studies aimed at immunotherapy and knowledge about this disease in endemic areas in Rio de Janeiro and in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate serum protein concentrations in calves experimentally inoculated with Salmonella Dublin. Twelve healthy 10 to 15-day-old Holstein calves were randomly allotted into two groups, control and infected with 10(8) CFU of Salmonella Dublin orally. The calves were subjected to physical evaluation and blood samples were collected shortly before administration of the bacteria and also 24, 48, 72, 96, 120 and 168 hours post-infection. The concentration of serum proteins was determined through sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Thirty serum proteins ranging from molecular weight of 24,000 Da to molecular weight of 236,000 Da were detected. Serum concentrations of ceruloplasmin (125,000 Da), haptoglobin (45,000 Da), acid glycoprotein (40,000 Da) and a 34,000 Da protein were significantly increased in the experimentally infected calves, when compared with their concentrations in the control animals. Therefore, this study showed that S. Dublin infection could lead to the increase of certain serum proteins in calves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of cytoskeletal proteins was evaluated immunohistochemically in 36 normal ovaries sampled from 18 sows and 44 cystic ovaries sampled from of 22 sows, was evaluated. All sows had history of reproductive problems, such as infertility or subfertility. The immunohistochemically stained area (IHCSA) was quantified through image analysis to evaluate the expression of these proteins in the follicular wall of secondary, tertiary, and cystic follicles. Cytokeratins (CK) immunoreactivity was strong in the granulosa cell layer (GC) and mild in the theca interna (TI) and externa (TE) of the normal follicles. There was severe reduction of the reaction to CK in the GC in the cystic follicles, mainly in the luteinized cysts. The immunoreactivity for vimentin was higher in the GC from normal and cystic follicles in contrast with the other follicular structures. In the luteinized cysts, the IHCSA for vimentin was significantly higher in TI and in both observed cysts, the labeling was more accentuated in TE. Immunohistochemical detection of desmin and α-SMA was restricted to the TE, without differences between the normal and cystic follicles. The results of the current study show that the development of ovarian cysts in sows is associated to changes in the expression of the cytoskeletal proteins CK and vimentin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Brazilian field isolate (IBV/Brazil/PR05) of avian infectious bronchitis virus (IBV), associated with development of nephritis in chickens, was previously genotyped as IBV variant after S1 gene sequencing. The aim of this study was to evaluate the levels of IL-6 in kidneys and trachea of birds vaccinated and challenged with IBV/Brazil/PR05 strain, correlating these results with scores of microscopic lesions, specific IBV antigen detection and viral load. The up-regulation of IL-6 and the increased levels of viral load on renal and tracheal samples were significantly correlated with scores of microscopic lesions. Reduced levels of viral load were detected in kidneys of birds previously vaccinated and challenged, compared to non-vaccinated challenged group, although markedly microscopic lesions were observed for both groups. The expression of IL-6, present both in the kidney and in the tracheas, was dependent on the load of the virus present in the tissue, and the development of lesions was related with IL-6 present in the tissues. These data suggest that variant IBV/Brazil/PR05 can induce the expression of proinflammatory cytokines in a manner correlated with viral load and increased IL-6 is involved in the tissue with the influx of inflammatory cells and subsequent nephritis. This may contribute with a model to the development of immunosuppressive agents of IL-6 to prevent acute inflammatory processes against infection with IBV and perhaps other coronaviruses, as well as contribute to the understanding of the immunopathogenesis of IBV nephropatogenic strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein engineering aims to improve the properties of enzymes and affinity reagents by genetic changes. Typical engineered properties are affinity, specificity, stability, expression, and solubility. Because proteins are complex biomolecules, the effects of specific genetic changes are seldom predictable. Consequently, a popular strategy in protein engineering is to create a library of genetic variants of the target molecule, and render the population in a selection process to sort the variants by the desired property. This technique, called directed evolution, is a central tool for trimming protein-based products used in a wide range of applications from laundry detergents to anti-cancer drugs. New methods are continuously needed to generate larger gene repertoires and compatible selection platforms to shorten the development timeline for new biochemicals. In the first study of this thesis, primer extension mutagenesis was revisited to establish higher quality gene variant libraries in Escherichia coli cells. In the second study, recombination was explored as a method to expand the number of screenable enzyme variants. A selection platform was developed to improve antigen binding fragment (Fab) display on filamentous phages in the third article and, in the fourth study, novel design concepts were tested by two differentially randomized recombinant antibody libraries. Finally, in the last study, the performance of the same antibody repertoire was compared in phage display selections as a genetic fusion to different phage capsid proteins and in different antibody formats, Fab vs. single chain variable fragment (ScFv), in order to find out the most suitable display platform for the library at hand. As a result of the studies, a novel gene library construction method, termed selective rolling circle amplification (sRCA), was developed. The method increases mutagenesis frequency close to 100% in the final library and the number of transformants over 100-fold compared to traditional primer extension mutagenesis. In the second study, Cre/loxP recombination was found to be an appropriate tool to resolve the DNA concatemer resulting from error-prone RCA (epRCA) mutagenesis into monomeric circular DNA units for higher efficiency transformation into E. coli. Library selections against antigens of various size in the fourth study demonstrated that diversity placed closer to the antigen binding site of antibodies supports generation of antibodies against haptens and peptides, whereas diversity at more peripheral locations is better suited for targeting proteins. The conclusion from a comparison of the display formats was that truncated capsid protein three (p3Δ) of filamentous phage was superior to the full-length p3 and protein nine (p9) in obtaining a high number of uniquely specific clones. Especially for digoxigenin, a difficult hapten target, the antibody repertoire as ScFv-p3Δ provided the clones with the highest affinity for binding. This thesis on the construction, design, and selection of gene variant libraries contributes to the practical know-how in directed evolution and contains useful information for scientists in the field to support their undertakings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seeds of 14 species from the ‘caatinga’, a dry forest ecosystem of the semiarid region of northeast Brazil, were analysed for total protein and total lipid contents, as well as fatty acid distribution. The seeds of Argemone mexicana L., an introduced and naturalized species in Brazil, commonly found in ‘caatingas’ and other vegetation, were also analysed. The protein contents ranged from 123 g.kg-1 to 551 g.kg-1, higher contents being found in species of Leguminosae, but also in Jatropha mollissima (Pohl) Baill. (Euphorbiaceae, 409 g.kg-1). Oil contents ranged from 10 g.kg-1 to 400 g.kg-1. The contents of protein and oil were found to be inversely proportional in the seeds of most species, the figures for proteins being generally higher than those of oils. Most species presented either oleic or linoleic as predominant fatty acids. Cardiospermum cf. corindum L. presented eicosenoic acid as the predominant fatty acid.