914 resultados para Twin-Block
Resumo:
BACKGROUND: Left anterior hemiblock (LAHB) is the most frequent conduction abnormality, but its impact on the diagnostic accuracy of the exercise ECG has not been studied. The aim of our study was to determine the diagnostic accuracy of ST depression for predicting ischaemia in the presence of LAHB. PATIENTS: Consecutive patients with known or suspected coronary heart disease undergoing exercise ECG and 99mTc-sestamibi single photon emission computed tomography (SPECT) were included in the analysis. Patients with left bundle branch block, with changes in QRS morphology related to myocardial infarction, and patients who had undergone pharmacological stress testing were excluded. RESULTS: Of 1532 patients assessed, 567 patients qualified for the analysis. In 69 patients with LAHB, ECG stress testing had lower sensitivity (38% vs 86%) and lower negative predictive value (82% vs 92%) than in patients with normal baseline ECG. The reduction of sensitivity appeared to be similar in patients with isolated LAHB (n=43), in patients with right bundle branch block (n=39), and with bifascicular block (n=26). In contrast, the positive predictive value of the test was excellent. CONCLUSION: The diagnostic accuracy of the exercise ECG for prediction of ischaemia is reduced in patients with LAHB.
Resumo:
Thermo-responsive materials have been of interest for many years, and have been studied mostly as thermally stimulated drug delivery vehicles. Recently acrylate and methacrylates with pendant ethylene glycol methyl ethers been studied as thermo responsive materials. This work explores thermo response properties of hybrid nanoparticles of one of these methacrylates (DEGMA) and a block copolymer with one of the acrylates (OEGA), with gold nanoparticle cores of different sizes. We were interested in the effects of gold core size, number and type of end groups that anchored the chains to the gold cores, and location of bonding sites on the thermo-response of the polymer. To control the number and location of anchoring groups we using a type of controlled radical polymerization called Reversible Addition Fragmentation Transfer (RAFT) Polymerization. Smaller gold cores did not show the thermo responsive behavior of the polymer but the gold cores did seem to self-assemble. Polymer anchored to larger gold cores did show thermo responsivity. The anchoring end group did not alter the thermoresponsivity but thiol-modified polymers stabilized gold cores less well than chains anchored by dithioester groups, allowing gold cores to grow larger. Use of multiple bonding groups stabilized the gold core. Using block copolymers we tested the effects of number of thiol groups and the distance between them. We observed that the use of multiple anchoring groups on the block copolymer with a sufficiently large gold core did not prevent thermo responsive behavior of the polymer to be detected which allows a new type of thermo-responsive hybrid nanoparticle to be used and studied for new applications.
Resumo:
Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Most of the definitions used in the thesis will be defined, and we provide a basic survey of topics in graph theory and design theory pertinent to the topics studied in this thesis. In Chapter 2, we are concerned with the study of fixed block configuration group divisible designs, GDD(n; m; k; λ1; λ2). We study those GDDs in which each block has configuration (s; t), that is, GDDs in which each block has exactly s points from one of the two groups and t points from the other. Chapter 2 begins with an overview of previous results and constructions for small group size and block sizes 3, 4 and 5. Chapter 2 is largely devoted to presenting constructions and results about GDDs with two groups and block size 6. We show the necessary conditions are sufficient for the existence of GDD(n, 2, 6; λ1, λ2) with fixed block configuration (3; 3). For configuration (1; 5), we give minimal or nearminimal index constructions for all group sizes n ≥ 5 except n = 10, 15, 160, or 190. For configuration (2, 4), we provide constructions for several families ofGDD(n, 2, 6; λ1, λ2)s. Chapter 3 addresses characterizing (3, r)-regular graphs. We begin with providing previous results on the well studied class of (2, r)-regular graphs and some results on the structure of large (t; r)-regular graphs. In Chapter 3, we completely characterize all (3, 1)-regular and (3, 2)-regular graphs, as well has sharpen existing bounds on the order of large (3, r)- regular graphs of a certain form for r ≥ 3. Finally, the appendix gives computational data resulting from Sage and C programs used to generate (3, 3)-regular graphs on less than 10 vertices.
Resumo:
Reflection seismic data from the F3 block in the Dutch North Sea exhibits many large-amplitude reflections at shallow horizons, typically categorized as “brightspots ” (Schroot and Schuttenhelm, 2003), mainly because of their bright appearance. In most cases, these bright reflections show a significant “flatness” contrasting with local structural trends. While flatspots are often easily identified in thick reservoirs, we have often occasionally observed apparent flatspot tuning effects at fluid contacts near reservoir edges and in thin reservoir beds, while only poorly understanding them. We conclude that many of the shallow large-amplitude reflections in block F3 are dominated by flatspots, and we investigate the thin-bed tuning effects that such flatspots cause as they interact with the reflection from the reservoir’s upper boundary. There are two possible effects to be considered: (1) the “wedge-model” tuning effects of the flatspot and overlying brightspots, dimspots, or polarity-reversals; and (2) the stacking effects that result from possible inclusion of post-critical flatspot reflections in these shallow sands. We modeled the effects of these two phenomena for the particular stratigraphic sequence in block F3. Our results suggest that stacking of post-critical flatspot reflections can cause similar large-amplitude but flat reflections, in some cases even causing an interface expected to produce a ‘dimspot’ to appear as a ‘brightspot’. Analysis of NMO stretch and muting shows the likely exclusion of critical offset data in stacked output. If post-critical reflections are included in stacking, unusual results will be observed. In the North Sea case, we conclude the tuning effect was the primary reason causing for the brightness and flatness of these reflections. However, it is still important to note that care should be taken while applying muting on reflections with wide range of incidence angles and the inclusion of critical offset data may cause some spurious features in the stacked section.
Resumo:
The integration of block-copolymers and nanoimprint lithography presents a novel and cost-effective approach to achieving nanoscale patterning capabilities. The authors demonstrate the fabrication of a surface-enhanced Raman scattering device using templates created by the block-copolymers nanoimprint lithography integrated method.
Resumo:
BACKGROUND AND OBJECTIVES: Nerve blocks using local anesthetics are widely used. High volumes are usually injected, which may predispose patients to associated adverse events. Introduction of ultrasound guidance facilitates the reduction of volume, but the minimal effective volume is unknown. In this study, we estimated the 50% effective dose (ED50) and 95% effective dose (ED95) volume of 1% mepivacaine relative to the cross-sectional area of the nerve for an adequate sensory block. METHODS: To reduce the number of healthy volunteers, we used a volume reduction protocol using the up-and-down procedure according to the Dixon average method. The ulnar nerve was scanned at the proximal forearm, and the cross-sectional area was measured by ultrasound. In the first volunteer, a volume of 0.4 mL/mm of nerve cross-sectional area was injected under ultrasound guidance in close proximity to and around the nerve using a multiple injection technique. The volume in the next volunteer was reduced by 0.04 mL/mm in case of complete blockade and augmented by the same amount in case of incomplete sensory blockade within 20 mins. After 3 up-and-down cycles, ED50 and ED95 were estimated. Volunteers and physicians performing the block were blinded to the volume used. RESULTS: A total 17 of volunteers were investigated. The ED50 volume was 0.08 mL/mm (SD, 0.01 mL/mm), and the ED95 volume was 0.11 mL/mm (SD, 0.03 mL/mm). The mean cross-sectional area of the nerves was 6.2 mm (1.0 mm). CONCLUSIONS: Based on the ultrasound measured cross-sectional area and using ultrasound guidance, a mean volume of 0.7 mL represents the ED95 dose of 1% mepivacaine to block the ulnar nerve at the proximal forearm.
Resumo:
The objective of this study was to evaluate the clinical usefulness, in terms of analgesic efficacy and safety, of ultrasound-guided pudendal nerve block performed with bupivacaine in cats undergoing perineal urethrostomy. Eighteen client-owned male cats scheduled for perineal urethrostomy were enrolled in the study and assigned to one of two treatment groups. The pudendal nerve block was performed under general anaesthesia as described elsewhere, with 0.3 ml/kg of either saline (group C) or 0.5% bupivacaine (group B) - the total injection volume being split equally on the two sites of injection (left and right). Intra-operatively, assessment of nociception was based on the rescue analgesics requirement, as well as on the evaluation of changes in physiological parameters in comparison with the baseline values. Post-operative pain assessment was performed using three different pain scales at recovery and then 1, 2 and 3 h after recovery. Cats in group B showed lower heart rates and required fewer analgesics during surgery than group C. Post-operatively, group B had lower pain scores and needed less rescue buprenorphine than group C. Iatrogenic block-related complications were not observed. In conclusion, the ultrasound-guided pudendal nerve block can be considered clinically useful in feline medicine as it provides reliable analgesia in cats undergoing perineal urethrostomy.
Resumo:
Block bootstrap has been introduced in the literature for resampling dependent data, i.e. stationary processes. One of the main assumptions in block bootstrapping is that the blocks of observations are exchangeable, i.e. their joint distribution is immune to permutations. In this paper we propose a new Bayesian approach to block bootstrapping, starting from the construction of exchangeable blocks. Our sampling mechanism is based on a particular class of reinforced urn processes