1000 resultados para Trichodesmium Culture
Resumo:
The adhesins of extraintestinal pathogenic Escherichia coli are essential for mediating direct interactions between the microbes and the host cell surfaces that they infect. Using fluorescence microscopy and gentamycin protection assays, we observed that 49 sepsis-associated E. coli (SEPEC) strains isolated from human adults adhered to and invaded Vero cells in the presence of D-mannose (100%). In addition, bacteria concentrations of approximately 2 x 10(7) CFU/mL were recovered from Vero cells following an invasion assay. Furthermore, PCR analysis of adhesin genes showed that 98.0% of these SEPEC strains tested positive for fimH, 69.4% for flu, 53.1% for csgA, 38.8% for mat, and 32.7% for iha. Analysis of the invasin genes showed that 16.3% of the SEPEC strains were positive for tia, 12.3% for gimB, and 10.2% for ibeA. Therefore, these data suggest that SEPEC adhesion to cell surfaces occurs through non-fimH mechanisms. Scanning electron microscopy showed the formation of microcolonies on the Vero cell surface. SEPEC invasiveness was also confirmed by the presence of intracellular bacteria, and ultrastructural analysis using electron transmission microscopy revealed bacteria inside the Vero cells. Taken together, these results demonstrate that these SEPEC strains had the ability to adhere to and invade Vero cells. Moreover, these data support the theory that renal cells may be the predominant pathway through which SEPEC enters human blood vessels.
Resumo:
In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones.
Resumo:
A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the proliferating autologous T-lymphocytes increased from 14.2 to 40.3% after incubated with DCs induced by apoptotic MCF-7 cells. The secretion of interferon-γ by these T-lymphocytes was also increased. In addition, cell-cell interaction between apoptotic MCF-7 cells and iDCs, but not soluble factors released by apoptotic MCF-7 cells, was crucial for the maturation of iDCs. These findings constitute a novel in vitro DC-based vaccine strategy for the treatment of breast cancer by ADM-induced apoptotic MCF-7 cells.
Resumo:
Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.
Resumo:
Some clinical isolates of Pseudomonas aeruginosa stored in our culture collection did not grow or grew poorly and showed lysis on the culture plates when removed from the collection and inoculated on MacConkey agar. One hypothesis was that bacteriophages had infected and killed those clinical isolates. To check the best storage conditions to maintain viable P. aeruginosa for a longer time, clinical isolates were stored at various temperatures and were grown monthly. We investigated the presence of phage in 10 clinical isolates of P. aeruginosa stored in our culture collection. Four strains of P. aeruginosa were infected by phages that were characterized by electron microscopy and isolated to assess their ability to infect. The best condition to maintain the viability of the strains during storage was in water at room temperature. Three Siphoviridae and two Myoviridae phages were visualized and characterized by morphology. We confirmed the presence of bacteriophages infecting clinical isolates, and their ability to infect and lyse alternative hosts. Strain PAO1, however, did not show lysis to any phage. Mucoid and multidrug resistant strains of P. aeruginosa showed lysis to 50% of the phages tested.
Resumo:
Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P4 throughout the culture period; however, P4 concentration was significantly higher in NDM. In both media, E2 concentration was increased at 24 h, followed by a decrease at 48 h. The E2:P4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E2:P4 ratio in FWS cultures.
Resumo:
Polygalacturonase production by the thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.5% (w/v) apple pectin and supplemented with 0.3% (w/v) corn steep liquor, reached its maximum after 36 hours with levels of 39 U.mL-1. The increase in apple pectin and corn steep liquor concentrations in the medium from 0.5 and 0.3%, respectively, to 0.65%, markedly affected the production of polygalacturonase, whose activity increased four times, reaching a maximum of 150.3 U.mL-1. Studies on polygalacturonase characterization revealed that the optimum temperature of this enzyme was between 60-70 °C. Thermostability profile indicated that the enzyme retained about 82 and 63% of its activity at 60 and 70 °C, respectively, after 2 hours of incubation. The optimum pH of the enzyme was found to be 10.0. After incubation of crude enzyme solution at room temperature for 2 hours at pH 8.0, a decrease of about 29% on its original activity was observed. At pH 10.0, the decrease was 25%.
Resumo:
Halotolerant or halophilic (Archaeabacteria) microorganisms can be found in salted and ripening fish products that are not affected by salt. They can be moderate or extremely halophilic bacteria. The extremely halophilic bacteria require between 15-30% of NaCl for growth. The extremely halophilic archaeobacteria may be selectively isolated in different media. The aim of this work was to determine the effectiveness of the Salt-Agar-Milk medium, a medium modified in our laboratory through the addition of MgSO4 and KCl - named SAMm, and its effect on the bacterial growth by means of comparison with other media, with and without milk, determining time of incubation and counting. Two samples of salted fish from local fish salting factories and two laboratory strains were used. The factory samples were matured anchovy and anchovy fillets in oil, and the laboratory strains were: Haloarcula spp. (proteolytic) and Halococcus spp. (non-proteolytic). The following media were alternatively used for the isolation of extremely halophilic bacteria: IRAM; Formulation of Gibbons and collaborators, Cod Milk agar, and SAMm. IRAM and Gibbons were also used enriched with milk. In the SAMm medium, there were obtained count values similar or higher than the ones of the traditional media; besides the simplicity of its elaboration, the possibility to obtain positive results two or three days earlier also added to its benefit. Consequently, it can be considered an alternative to the media traditionally used for the studied halophilic bacteria.