972 resultados para Topographic map complex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an analysis for the bit error rate (BER) performance of space-time block codes (STBC) from generalized complex orthogonal designs for M-PSK modulation. In STBCs from complex orthogonal designs (COD), the norms of the column vectors are the same (e.g., Alamouti code). However, in generalized COD (GCOD), the norms of the column vectors may not necessarily be the same (e.g., the rate-3/5 and rate-7/11 codes by Su and Xia in [1]). STBCs from GCOD are of interest because of the high rates that they can achieve (in [2], it has been shown that the maximum achievable rate for STBCs from GCOD is bounded by 4/5). While the BER performance of STBCs: from COD (e.g., Alamouti code) can be simply obtained from existing analytical expressions for receive diversity with the same diversity order by appropriately scaling the SNR, this can not be done for STBCs from GCOD (because of the unequal norms of the column vectors). Our contribution in this paper is that we derive analytical expressions for the BER performance of any STBC from GCOD. Our BER analysis for the GCOD captures the performance of STBCs from COD as special cases. We validate our results with two STBCs from GCOD reported by Su and Xia in [1], for 5 and 6 transmit antennas (G(5) and G(6) in [1]) with rates 7/11 and 3/5, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sec1/Munc18 (SM) protein family members are evolutionary conserved proteins. They perform an essential, albeit poorly understood function in SNARE complex formation in membrane fusion. In addition to the SNARE complex components, only a few SM protein binding proteins are known. Typically, their binding modes to SM proteins and their contribution to the membrane fusion regulation is poorly characterised. We identified Mso1p as a novel Sec1p interacting partner. It was shown that Mso1p and Sec1p interact at sites of polarised secretion and that this localisation is dependent on the Rab GTPase Sec4p and its GEF Sec2p. Using targeted mutagenesis and N- and C-terminal deletants, it was discovered that the interaction between an N-terminal peptide of Mso1p and the putative Syntaxin N-peptide binding area in Sec1p domain 1 is important for membrane fusion regulation. The yeast Syntaxin homologues Sso1p and Sso2p lack the N-terminal peptide. Our results show that in addition to binding to the putative N-peptide binding area in Sec1p, Mso1p can interact with Sso1p and Sso2p. This result suggests that Mso1p can mimic the N-peptide binding to facilitate membrane fusion. In addition to Mso1p, a novel role in membrane fusion regulation was revealed for the Sec1p C-terminal tail, which is missing in its mammalian homologues. Deletion of the Sec1p-tail results in temperature sensitive growth and reduced sporulation. Using in vivo and in vitro experiments, it was shown that the Sec1p-tail mediates SNARE complex binding and assembly. These results propose a regulatory role for the Sec1p-tail in SNARE complex formation. Furthermore, two novel interaction partners for Mso1p, the Rab GTPase Sec4p and plasma membrane phospholipids, were identified. The Sec4p link was identified using Bimolecular Fluorescence Complementation assays with Mso1p and the non-SNARE binding Sec1p(1-657). The assay revealed that Mso1p can target Sec1p(1-657) to sites of secretion. This effect is mediated via the Mso1p C-terminus, which previously has been genetically linked to Sec4p. These results and in vitro binding experiments suggest that Mso1p acts in cooperation with the GTP-bound form of Sec4p on vesicle-like structures prior to membrane fusion. Mso1p shares homology with the PIP2 binding domain of the mammalian Munc18 binding Mint proteins. It was shown both in vivo and in vitro that Mso1p is a phospholipid inserting protein and that this insertion is mediated by the conserved Mso1p amino terminus. In vivo, the Mso1p phospholipid binding is needed for sporulation and Mso1p-Sec1p localisation at the sites of secretion at the plasma membrane. The results reveal a novel layer of membrane fusion regulation in exocytosis and propose a coordinating role for Mso1p in connection with membrane lipids, Sec1p, Sec4p and SNARE complexes in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QUITE OFTEN, metal ions profoundly affect the condensation of carbonyl compounds with primary amines to form Schiff bases as well as their subsequent reactions[I-4]. Condensation of benzaldehyde with o-phenylenediamine (opd) in glacial acetic acid[5] or in absolute alcohol[6] gives benzimidazole derivative, 1-benzyl-2-phenylbenzimidazole (bpbi). In this reaction, the Schiff base N,N'-dibenzylidene-o-phenylenedianfme (dbpd) has been postulated as an intermediate, which cyclises to give bpbi. It was found that the reaction of opd in presence of copperO1) perchlorate with benzaldehyde gave dbpd complex of copper(l) perchlorate instead of bpbi.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autoimmune diseases are more common in dogs than in humans and are already threatening the future of some highly predisposed dog breeds. Susceptibility to autoimmune diseases is controlled by environmental and genetic factors, especially the major histocompatibility complex (MHC) gene region. Dogs show a similar physiology, disease presentation and clinical response as humans, making them an excellent disease model for autoimmune diseases common to both species. The genetic background of canine autoimmune disorders is largely unknown, but recent annotation of the dog genome and subsequent development of new genomic tools offer a unique opportunity to map novel autoimmune genes in various breeds. Many autoimmune disorders show breed-specific enrichment, supporting a strong genetic background. Furthermore, the presence of hundreds of breeds as genetic isolates facilitates gene mapping in complex autoimmune disorders. Identification of novel predisposing genes establishes breeds as models and may reveal novel candidate genes for the corresponding human disorders. Genetic studies will eventually shed light on common biological functions and interactions between genes and the environment. This study aimed to identify genetic risk factors in various autoimmune disorders, including systemic lupus erythematosus (SLE)-related diseases, comprising immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis arteritis (SMRA) as well as Addison s disease (AD) in Nova Scotia Duck Tolling Retrievers (NSDTRs) and chronic superficial keratitis (CSK) in German Shepherd dogs (GSDs). We used two different approaches to identify genetic risk factors. Firstly, a candidate gene approach was applied to test the potential association of MHC class II, also known as a dog leukocyte antigen (DLA) in canine species. Secondly, a genome-wide association study (GWAS) was performed to identify novel risk loci for SLE-related disease and AD in NSDTRs. We identified DLA risk haplotypes for an IMRD subphenotype of SLE-related disease, AD and CSK, but not in SMRA, and show that the MHC class II gene region is a major genetic risk factor in canine autoimmune diseases. An elevated risk was found for IMRD in dogs that carried the DLA-DRB1*00601/DQA1*005011/DQB1*02001 haplotype (OR = 2.0, 99% CI = 1.03-3.95, p = 0.01) and for ANA-positive IMRD dogs (OR = 2.3, 99% CI = 1.07-5.04, p-value 0.007). We also found that DLA-DRB1*01502/DQA*00601/DQB1*02301 haplotype was significantly associated with AD in NSDTRs (OR = 2.1, CI = 1.0-4.4, P = 0.044) and the DLA-DRB1*01501/DQA1*00601/DQB1*00301 haplotype with the CSK in GSDs (OR=2.67, CI=1.17-6.44, p= 0.02). In addition, we found that homozygosity for the risk haplotype increases the risk for each disease phenotype and that an overall homozygosity for the DLA region predisposes to CSK and AD. Our results have enabled the development of genetic tests to improve breeding practices by avoiding the production of puppies homozygous for risk haplotypes. We also performed the first successful GWAS for a complex disease in dogs. With less than 100 cases and 100 controls, we identified five risk loci for SLE-related disease and AD and found strong candidate genes involved in a novel T-cell activation pathway. We show that an inbred dog population has fewer risk factors, but each of them has a stronger genetic risk. Ongoing studies aim to identify the causative mutations and bring new knowledge to help diagnostics, treatment and understanding of the aetiology of SLE-related diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Anhydrous aluminium chloride reacts with phosphorus oxychloride to give a complex with a composition AlCl3.2 POCl3 which can be prepared in the form of a free flowing powder. 2. The phosphorus oxychloride-aluminium chloride complex in nitrobenzene dissociates into AlCl3.POCl3 and POCl3 as indicated by the cryoscopic measurements. 3. The solution of the complex in nitrobenzene has a higher specific conductivity than the corresponding electrical conductivities of individual components. Similar higher electrical conductance is observed when the two components are mixed in nitrobenzene in different proportions. 4.When a solution of anhydrous aluminium chloride in nitrobenzene is titrated conductometrically against a solution of phosphorus oxychloride in nitrobenzene, a limiting value in the conductivity is reached at point corresponding to the molecular composition, the components in the ratio of 1:2 AlCl3: POCl3 in solution. 5. The absorption maxima of the complex in nitrobenzene solution differ from the absorption maximum of the individual components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The titled complex, obtained by co-crystallization (EtOH/25 degrees C),is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the complex La(NO3)3.4(CH3)2SO has been solved by the heavy-atom method. The complex crystallizes in the monoclinic space group C2/e with four formula units in a unit cell of dimensions a= 14.94, b= 11.04, c= 15.54 A and fl= 109 ° 10'. The parameters have been refined by threedimensional least-squares procedures with anisotropic thermal parameters for all atoms except hydrogen. The final R index for 1257 observed reflexions is 0.094. The La 3 + ion is coordinated by ten oxygen atoms with La-O distances varying from 2.47 to 2.71 A. The geometry of the coordination polyhedron is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaviviruses have been shown to induce cell surface expression of major histocompatibility complex class I (MHC-I) through the activation of NF-kappa B. Using IKK1(-/-), IKK2(-/-), NEMO-/-, and IKK1-/- IKK2-/- double mutant as well as p50(-/-) RelA(-/-) cRel(-/-) triple mutant mouse embryonic fibroblasts infected with Japanese encephalitis virus (JEV), we show that this flavivirus utilizes the canonical pathway to activate NF-kappa B in an IKK2- and NEMO-, but not IKK1-, dependent manner. NF-kappa B DNA binding activity induced upon virus infection was shown to be composed of RelA: p50 dimers in these fibroblasts. Type I interferon (IFN) production was significantly decreased but not completely abolished upon virus infection in cells defective in NF-kappa B activation. In contrast, induction of classical MHC-I (class 1a) genes and their cell surface expression remained unaffected in these NF-kappa B-defective cells. However, MHC-I induction was impaired in IFNAR(-/-) cells that lack the alpha/beta IFN receptor, indicating a dominant role of type I IFNs but not NF-kappa B for the induction of MHC-I molecules by Japanese encephalitis virus. Our further analysis revealed that the residual type I IFN signaling in NF-kappa B-deficient cells is sufficient to drive MHC-I gene expression upon virus infection in mouse embryonic fibroblasts. However, NF-kappa B could indirectly regulate MHC-I expression, since JEV-induced type I IFN expression was found to be critically dependent on it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the group of continuous isometries for the Kobayashi or Caratheodory metrics of a strongly convex domain in C-n is compact unless the domain is biholomorphic to the ball. A key ingredient, proved using differential geometric ideas, is that a continuous isometry between a strongly convex domain and the ball has to be biholomorphic or anti-biholomorphic. Combining this with a metric version of Pinchuk's rescaling technique gives the main result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For p x n complex orthogonal designs in k variables, where p is the number of channels uses and n is the number of transmit antennas, the maximal rate L of the design is asymptotically half as n increases. But, for such maximal rate codes, the decoding delay p increases exponentially. To control the delay, if we put the restriction that p = n, i.e., consider only the square designs, then, the rate decreases exponentially as n increases. This necessitates the study of the maximal rate of the designs with restrictions of the form p = n+1, p = n+2, p = n+3 etc. In this paper, we study the maximal rate of complex orthogonal designs with the restrictions p = n+1 and p = n+2. We derive upper and lower bounds for the maximal rate for p = n+1 and p = n+2. Also for the case of p = n+1, we show that if the orthogonal design admit only the variables, their negatives and multiples of these by root-1 and zeros as the entries of the matrix (other complex linear combinations are not allowed), then the maximal rate always equals the lower bound.