978 resultados para Tooth enamel
Resumo:
Direct composite resin restorations have become a viable alternative for patients that require anterior restorative procedures to be integrated to the other teeth that compose the smile, especially for presenting satisfactory esthetic results and minimum wear of the dental structure. Technological evolution along with a better understanding of the behavior of dental tissues to light incidence has allowed the development of new composite resins with better mechanical and optical properties, making possible a more artistic approach for anterior restorations. The combination of the increasing demand of patients for esthetics and the capacity to preserve the dental structure resulted in the development of different incremental techniques for restoring fractured anterior teeth in a natural way. In order to achieve esthetic excellence, dentists should understand and apply artistic and scientific principles when choosing color of restorative materials, as well as during the insertion of the composite resin. The discussion of these strategies will be divided into two papers. In this paper, the criteria for color and material selection to obtain a natural reproduction of the lost dental structures and an imperceptible restoration will be addressed.
Resumo:
This study evaluated the capacity of fluoride acidic dentifrices (pH 4.5) to promote enamel remineralization using a pH cycling model, comparing them with a standard dentifrice (1,100 µgF/g). Enamel blocks had their surface polished and surface hardness determined (SH). Next, they were submitted to subsurface enamel demineralization and to post-demineralization surface hardness analysis. The blocks were divided into 6 experimental groups (n=10): placebo (without F, pH 4.5, negative control), 275, 412, 550, 1,100 µgF/g and a standard dentifrice (positive control). The blocks were submitted to pH cycling for 6 days and treatment with dentifrice slurries twice a day. After pH cycling, surface and cross-sectional hardness were assessed to obtain the percentage of surface hardness recovery (%SHR) and the integrated loss of subsurface hardness (ΔKHN). The results showed that %SHR was similar among acidic dentifrices with 412, 550, 1,100 µgF/g and to the positive control (Tukey's test; p>0.05). For ΔKHN, the acidic dentifrice with 550 µg F/g showed a better performance when compared with the positive control. It can be concluded that acidic dentifrice 550 µgF/g had similar remineralization capacity to that of positive control.
Resumo:
This in vitro study evaluated the preventive potential of experimental pastes containing 10% and 20% hydroxyapatite nanoparticles (Nano-HAP), with or without fluoride, on dental demineralization. Bovine enamel (n=15) and root dentin (n=15) specimens were divided into 9 groups according to their surface hardness: control (without treatment), 20 Nanop paste (20% HAP), 20 Nanop paste plus (20% HAP + 0.2% NaF), 10 Nanop paste (10% HAP), 10 Nanop paste plus (10% HAP + 0.2% NaF), placebo paste (without fluoride and HAP), fluoride paste (0.2% NaF), MI paste (CPP-ACP, casein phosphopeptide-amorphous calcium phosphate), and MI paste plus (CPP-ACP + 0.2% NaF). Both MI pastes were included as commercial control products containing calcium phosphate. The specimens were treated with the pastes twice a day (1 min), before and after demineralization. The specimens were subjected to a pH-cycling model (demineralization–6-8 h/ remineralization-16-18 h a day) for 7 days. The dental subsurface demineralization was analyzed using cross-sectional hardness (kgf/mm 2 , depth 10-220 µm). Data were tested using repeated-measures two-way ANOVA and Bonferroni's test (p<0.05). The only treatment able to reduce the loss of enamel and dentin subsurface hardness was fluoride paste (0.2% NaF), which differed significantly from the control at 30- and 50-µm depth (p<0.0001). The other treatments were not different from each other or compared with the control. The experimental Nanop pastes, regardless of the addition of fluoride, were unable to reduce dental demineralization in vitro.
Resumo:
We report the case of a 9-year-old girl who presented with a complaint of a malodorous bloody discharge from the left naris. The patient had previously undergone a complete repair of left-sided cleft lip and palate. Clinical examination revealed hyperplasia of the nasal mucosa on the left side. X-ray examination of the nasal cavity demonstrated a radiopaque structure that resembled a tooth and a radiopaque mass similar to an odontoma that was adherent to the root of the suspected tooth. With the patient under general anesthesia, the structure was removed. On gross inspection, the structure was identified as a tooth with a rhinolith attached to the surface of its root. Microscopic examination revealed normal dentin and pulp tissue. A nonspecific inflammatory infiltrate was observed around the rhinolith, and areas of regular and irregular mineralization were seen. Some mineralized areas exhibited melanin-like brownish pigmentation. Areas of mucus with deposits of mineral salts were also observed. Rare cases of an intranasal tooth associated with a rhinolith have been described in the literature. We believe that this case represents only the second published report of an intranasal tooth associated with a rhinolith in a patient with cleft lip and palate
Resumo:
Objectives: Stimulation of salivary flow is considered a preventive strategy for dental erosion. Alternatively, products containing calcium phosphate, such as a complex of casein phosphopeptide–amorphous calcium phosphate (CPP–ACP), have also been tested against dental erosion. Therefore, this in situ study analyzed the effect of chewing gum containing CPP–ACP on the mineral precipitation of initial bovine enamel erosion lesions. Methods: Twelve healthy adult subjects wore palatal appliances with two eroded bovine enamel samples. The erosion lesions were produced by immersion in 0.1% citric acid (pH 2.5) for 7 min. During three experimental crossover in situ phases (1 day each), the subjects chewed a type of gum, 3 times for 30 min, in each phase: with CPP–ACP (trident total), without CPP–ACP (trident), and no chewing gum (control). The Knoop surface microhardness was measured at baseline, after erosion in vitro and the mineral precipitation in situ. The differences in the degree of mineral precipitation were analyzed using repeated measures (RM-) ANOVA and post hoc Tukey’s test ( p < 0.05). Results: Significant differences were found among the remineralizing treatments ( p < 0.0001). Chewing gum (19% of microhardness recovery) improved the mineral precipitation compared to control (10%) and the addition of CPP–ACP into the gum promoted the best mineral precipitation effect (30%). Conclusions: Under this protocol, CPP–ACP chewing gum improved the mineral precipitation of eroded enamel. Clinical significance: Since the prevalence of dental erosion is steadily increasing, CPP–ACP chewing gum might be an important strategy to reduce th eprogression of initial erosion lesions.
Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments
Resumo:
Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50) fragments of bovine enamel (15 mm × 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p?0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p?0.05). Results: Means and standard deviations of roughness and wear (µm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.
Resumo:
Background: The prevalence and severity of tooth wear and dental erosion is rising in children and there is no consensus about an index to be employed. Aim: To assess the reliability of an epidemiological scoring system dental wear index (DWI) to measure tooth wear and dental erosive wear. Design: An epidemiological cross-sectional survey was conducted to evaluate and compare tooth wear and dental erosion using the dental wear index and erosion wear index (EWI). The study was conducted with randomised samples of 2,371 children aged between 4 years and 12 years selected from the State of São Paulo, Brazil. Records were used for calculating tooth wear and dental erosion; the incisal edge and canine cusp were excluded. Results: As the schoolchildren's ages increased the severity of primary tooth wear increased in canines (P = 0.0001, OR = 0.34) and molars (P = 0.0001, OR = 2.47) and erosion wear increased in incisal/occlusal (P = 0.0001, OR = 5.18) and molars (P = 0.0001, OR = 2.47). There was an increased prevalence of wear in the permanent teeth of older schoolchildren, particularly on the incisal/occlusal surfaces (P = 0.0001, OR = 7.03). Conclusion: The prevalence of tooth wear and dental erosion increased as age increased in children. The epidemiological scoring system Dental Wear Index is able to measure both tooth wear and dental erosive wear. This index should be used to monitor the progression of non-carious lesions and to evaluate the levels of disease in the population.
Resumo:
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C–C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C–C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3−/− and CCR1−/− mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3−/− mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3−/− and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Resumo:
Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.
Resumo:
The aim of this study was to evaluate, histometrically, the bone healing of the molar extraction socket just after cigarette smoke inhalation (CSI). Forty male Wistar rats were randomly assigned to a test group (animals exposed to CSI, starting 3 days before teeth extraction and maintained until sacrifice; n=20) and a control group (animals never exposed to CSI; n=20). Second mandibular molars were bilaterally extracted and the animals (n=5/group/period) were sacrificed at 3, 7, 10 and 14 days after surgery. Digital images were analyzed according to the following histometric parameters: osteoid tissue (OT), remaining area (RA), mineralized tissue (MT) and non-mineralized tissue (NMT) in the molar socket. Intergroup analysis showed no significant differences at day 3 (p>0.05) for all parameters. On the 7th day, CSI affected negatively (p<0.05) bone formation with respect to NMT and RA (MT: 36%, NMT: 53%, RA: 12%; and MT: 39%, NMT: 29%, RA: 32%, for the control and test groups, respectively). In contrast, no statistically significant differences (p>0.05) were found at days 10 and 14. It may be concluded that CSI may affect socket healing from the early events involved in the healing process, which may be critical for the amount and quality of new-bone formation in smokers.
Resumo:
Besides the risk of filling material extrusion throughout the apex, a satisfactory apical seal can be difficult to achieve in canals with open apices or iatrogenic enlargements of the apical constriction. These situations pose a challenge to root canal filling. This paper describes the root canal filling of a maxillary right canine with an overinstrumented apex, complete loss of the apical stop, extensive canal transportation and apical periodontitis. A 5 mm calcium hydroxide apical plug was placed before root canal filling. The plug was made by soaking paper points with saline, dipping the points in calcium hydroxide powder and then applying it to the apex several times, until a consistent apical plug was obtained. The canal was then irrigated with saline in order to remove any residual calcium hydroxide from the root canal walls, dried with paper points and obturated with an inverted #80 gutta-percha cone and zinc oxide-eugenol based sealer by the lateral condensation technique. An 8-year radiographic follow-up showed formation of mineralized tissue sealing the apical foramen, apical remodeling and no signs of apical periodontitis.
Resumo:
Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.
Resumo:
There is no reason for Dentistry to use different terms for phenomena defined in Physics, the specific field in which concepts associated with forces are established and adapted. In place of pressure/tension, the compression/traction pair should be used. This study defines each one of these terms and justifies their use. Our contemporary world demands standardized criteria, methods, measures, concepts and terms to ensure that study protocols, results and applications are used in the same way in any country or area of human action.
Resumo:
Zusammenfassung Mittels Fluoreszenzfarbstoffen können Strukturen sichtbar gemacht werden, die auf kon-ventionellem Weg nicht, oder nur schwer darzustellen sind. Besonders in Kombination mit der Konfokalen Laser Scanning Mikroskopie eröffnen sich neue Wege zum spezifischen Nachweis unterschiedlichster Komponenten biologischer Proben und gegebenenfalls deren dreidimensionale Widergabe.Die Visualisierung des Proteinanteils des Zahnhartgewebes kann mit Hilfe chemisch kopplungsfähiger Fluorochrome durchgeführt werden. Um zu zeigen, daß es sich bei dieser Markierung nicht um unspezifische Adsorption des Farbstoffes handelt, wurde zur Kontrolle die Proteinkomponente der Zahnproben durch enzymatischen Verdau beseitigt. Derartig behandelte Präparate wiesen eine sehr geringe Anfärbbarkeit auf.Weiterführend diente diese enzymatische Methode als Negativkontrolle zum Nachweis der Odontoblastenfortsätze im Dentin bzw. im Bereich der Schmelz-Dentin-Grenze. Hiermit konnte differenziert werden zwischen reinen Reflexionsbildern der Dentinkanäle und den Zellausläufern deren Membranen gezielt durch lipophile Fluoreszenzfarbstoffe markiert wurden.In einem weiteren Ansatz konnte gezeigt werden, daß reduzierte und daher nichtfluoreszente Fluoresceinabkömmlinge geeignet sind, die Penetration von Oxidationsmitteln (hier H2O2) in den Zahn nachzuweisen. Durch Oxidation dieser Verbindungen werden fluoreszierende Produkte generiert, die den Nachweis lieferten, daß die als Zahnbleichmittel eingesetzten Mittel rasch durch Schmelz und Dentin bis in die Pulpahöhle gelangen können.Die Abhängigkeit der Fluoreszenz bestimmter Fluorochrome von deren chemischer Um-gebung, im vorliegenden Fall dem pH-Wert, sollte eingesetzt werden, um den Säuregrad im Zahninneren fluoreszenzmikroskopisch darzustellen. Hierbei wurde versucht, ein ratio-metrisches Verfahren zu entwickeln, mit dem die pH-Bestimmung unter Verwendung eines pH-abhängigen und eines pH-unabhängigen Fluorochroms erfolgt. Diese Methode konnte nicht für diese spezielle Anwendung verifiziert werden, da Neutralisationseffekte der mineralischen Zahnsubstanz (Hydroxylapatit) die pH-Verteilung innerhalb der Probe beeinflußen. Fluoreszenztechniken wurden ebenfalls ergänzend eingesetzt zur Charakterisierung von kovalent modifizierten Implantatoberflächen. Die, durch Silanisierung von Titantestkörpern mit Triethoxyaminopropylsilan eingeführten freien Aminogruppen konnten qualitativ durch den Einsatz eines aminspezifischen Farbstoffes identifiziert werden. Diese Art der Funktionalisierung dient dem Zweck, Implantatoberflächen durch chemische Kopplung adhäsionsvermittelnder Proteine bzw. Peptide dem Einheilungsprozeß von Implantaten in den Knochen zugänglicher zu machen, indem knochenbildende Zellen zu verbessertem Anwachsverhalten stimuliert werden. Die Zellzahlbestimmung im Adhäsionstest wurde ebenfalls mittels Fluoreszenzfarbstoffen durchgeführt und lieferte Ergebnisse, die belegen, daß die durchgeführte Modifizierung einen günstigen Einfluß auf die Zelladhäsion besitzt.
Resumo:
In the present study, pterosaur skull constructions were analysed using a combined approach of finite element analysis (FEA), static investigations as well as applying classical beam theory and lever mechanics. The study concentrates on the operating regime „bite“, where loads are distributed via the dentition or a keratinous rhamphotheca into the skull during jaw occlusion. As a first step, pterosaur tooth constructions were analysed. The different morphologies of the tooth construction determine specific operational ranges, in which the teeth perform best (= greatest resistance against failure). The incomplete enamel-covering of the pterosaur tooth constructions thereby leads to a reduction of strain and stress and to a greater lateral elasticity than for a complete enamel cover. This permits the development of high and lateral compressed tooth constructions. Further stress-absorption occurs in the periodontal membrane, although its mechanical properties can not be clarified unambiguously. A three-dimensionally preserved skull of Anhanguera was chosen as a case-study for the investigation of the skull constructions. CT-scans were made to get information about the internal architecture, supplemented by thin-sections of a rostrum of a second Anhanguera specimen. These showed that the rostrum can be approximated as a double-walled triangular tube with a large central vacuity and an average wall-thickness of the bony layers of about 1 mm. On base of the CT-scans, a stereolithography of the skull of Anhanguera was made on which the jaw adductor and abductor muscles were modelled, permitting to determine muscular forces. The values were used for the lever mechanics, cantilever and space frame analysis. These studies and the FEA show, that the jaw reaction forces are critical for the stability of the skull construction. The large jugal area ventral to the orbita and the inclined occipital region act as buttresses against these loads. In contrast to the orbitotemporal region which is subject to varying loading conditions, the pattern in the rostrum is less complex. Here, mainly bending in dorsal direction and torsion occur. The hollow rostrum leads to a reduction of weight of the skull and to a high bending and torsional resistance. Similar to the Anhanguera skull construction, the skulls of those pterosaur taxa were analysed, from which enough skull material is know to permit a reliable reconstruction. Furthermore, FEA were made from five selected taxa. The comparison of the biomechanical behaviour of the different skull constructions results in major transformational processes: elongation of rostra, inclination of the occipital region, variation of tooth morphology, reduction of the dentition and replacement of teeth by a keratinous hook or rhamphotheca, fusion of naris and antorbital fenestra, and the development of bony and soft-tissue crests. These processes are discussed for their biomechanical effects during bite. Certain optional operational ranges for feeding are assigned to the different skull constructions and previous hypotheses (e.g. skimming) are verified. Using the principle of economisation, these processes help to establish irreversible transformations and to define possible evolutionary pathways. The resulting constructional levels and the structural variations within these levels are interpreted in light of a greater feeding efficiency and reduction of bony mass combined with an increased stability against the various loads. The biomechanical conclusive pathways are used for comparison and verification of recent hypothesis of the phylogenetic systematics of pterosaurs.