924 resultados para TRANSPARENT ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parameters that control the stability of ZnO-nanoparticles suspensions and their deposition by electrophoretic deposition were studied, so as to organize the assembly and compaction of nanoparticles. The addition of cationic polyelectrolyte - Polyethylenimine (PEI) - with different molecular weights was investigated, in order to study their effectiveness and the influence of the molecular weight of the organic chain on suspensions dispersion. It was found that PEI with the highest molecular weight provided better dispersion conditions. Cathodic EPD was performed under previously optimized suspensions conditions and over electropolished stainless steel substrates. Experimental results showed that the EPD process in these conditions allows obtaining dense transparent ZnO thin films. Deposition times and intensities were optimized by analyzing the resulting thin films characteristics. Finally, the deposits were characterized by FE-SEM, AFM, and different spectroscopic techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building-integrated Photovoltaics (BIPV) is one of the most promising technologies enabling buildings to generate on-site part of their electricity needs while performing architectural functionalities. A clear example of BIPV products consists of semi-transparent photovoltaic modules (STPV), designed to replace the conventional glazing solutions in building façades. Accordingly, the active building envelope is required to perform multiple requirements such as provide solar shading to avoid overheating, supply solar gains and thermal insulation to reduce heat loads and improve daylight utilization. To date, various studies into STPV systems have focused on their energy performance based on existing simulation programs, or on the modelling, normally validated by limited experimental data, of the STPV modules thermal behaviour. Taking into account that very limited experimental research has been conducted on the energy performance of STPV elements and that the characterization in real operation conditions is necessary to promote an energetically efficient integration of this technology in the building envelope, an outdoor testing facility has been designed, developed and built at the Solar Energy Institute of the Technical University of Madrid. In this work, the methodology used in the definition of the testing facility, its capability and limitations are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complete characterisation of PV modules for building integration is needed in order to know their influence on the building’s global energy balance. Specifically, certain characteristic parameters should be obtained for each different PV module suitable for building integrated photovoltaics (BIPV), some by direct or indirect measurements at the laboratory, and others by monitoring the element performance mounted in real operating conditions. In the case of transparent building envelopes it is particularly important to perform an optical and thermal characterization of the PV modules that would be integrated in them. This paper addresses the optical characterization of some commercial thin-film PV modules having different degrees of transparency, suitable for building integration in façades. The approach is based on the measurement of the spectral UV/Vis/NIR reflectance and transmittance of the different considered samples, both at normal incidence and as a function of the angle of incidence. With the obtained results, the total and zoned UV, visible and NIR transmission and reflection values are calculated, enabling the correct characterization of the PV modules integrated in façades and the subsequent evaluation of their impact over the electrical, thermal and lighting performance in a building.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the building energy saving strategies, BIPV (building integrated photovoltaic systems) present a promising potential based on the close relationship existing between these multifunctional systems and the overall building energy balance. Building integration of STPV (semi-transparent photovoltaic) elements affects deeply the building energy demand since it influences the heating, cooling and lighting loads as well as the local electricity generation. This work analyses over different window-to-wall ratios the overall energy performance of five STPV elements, each element having a specific degree of transparency, in order to assess the energy saving potential compared to a conventional solar control glass compliant with the local technical standard. The prior optical characterization, focused to measure the spectral properties of the elements, was experimentally undertaken. The obtained data were used to perform simulations based on a reference office building using a package of specific software tools (DesignBuilder, EnergyPlus, PVsyst, and COMFEN) to take proper account of the STPV peculiarities. To evaluate the global energy performance of the STPV elements a new Energy Balance Index was formulated. The results show that for intermediate and large façade openings the energy saving potential provided by the STPV solutions ranges between 18% and 59% compared to the reference glass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene and carbon nanotubes are promising materials for supercapacitor electrodes because of their high specific surface area and excellent electrical, thermal, and mechanical properties. However, these materials suffer from a high manufacturing cost and some aggregation of graphene layers or the presence of toxic residual metallic impurities of carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La hipótesis general que esta tesis quiere demostrar es que la integración arquitectónica de sistemas fotovoltaicos semitransparentes (STPV) puede contribuir a mejorar la eficiencia energética de los edificios. Por lo tanto, la investigación se centra en el desarrollo de una metodología capaz de cuantificar la reducción de la demanda energética del edificio proporcionada por estas novedosas soluciones constructivas. Al mismo tiempo, los parámetros de diseño de las soluciones STPV se han analizado para establecer cuales presentan el mayor impacto sobre el balance energético global del edificio y por lo tanto tienen que ser cuidadosamente definidos a la hora de optimizar el comportamiento energético del mismo. A la luz de estos objetivos, la metodología de estudio se ha centrado en tres puntos principales:  Caracterizar el comportamiento energético global de sistemas STPV en condiciones de operación realistas, similares a las que se darían en un sistema real;  Caracterizar el comportamiento energético global de sistemas STPV en condiciones controladas, con el objetivo de estudiar la variación del comportamiento del los elementos en función de parámetro de diseño y operación;  Evaluar el potencial de ahorro energético global de los sistemas STPV en comparación con soluciones acristaladas convencionales al variar de las condiciones de contorno constituidas por los parámetros de diseño (como el grado de transparencia), las características arquitectónicas (como el ratio entre superficie acristalada y superficie opaca en la fachada del edificio) y las condiciones climáticas (cubriendo en particular la climatología europea). En síntesis, este trabajo intenta contribuir a comprender la interacción que existe entre los sistemas STPV y el edificio, proporcionando tanto a los fabricantes de los componentes como a los profesionales de la construcción información valiosa sobre el potencial de ahorro energético asociado a estos nuevos sistemas constructivos. Asimismo el estudio define los parámetros de diseño adecuados para lograr soluciones eficientes tanto en proyectos nuevos como de rehabilitación. ABSTRACT The general hypothesis this work seeks to demonstrate is that the architectural integration of Semi-Transparent Photovoltaic (STPV) systems can contribute to improving the energy efficiency of buildings. Accordingly, the research has focused on developing a methodology able to quantify the building energy demand reduction provided by these novel constructive solutions. At the same time, the design parameters of the STPV solution have been analysed to establish which of them have the greatest impact on the global energy balance of the building, and therefore which have to be carefully defined in order to optimize the building operation. In the light of these goals, the study methodology has focused on three main points:  To characterise the global energy behaviour of STPV systems in realistic operating conditions, similar to those in which a real system will operate;  To characterise the global energy behaviour of STPV systems in controlled conditions in order to study how the performance varies depending on the design and operating parameters;  To assess the global energy saving potential of STPV systems in comparison with conventional glazing solutions by varying the boundary conditions, including design parameters (such as the degree of transparency), architectural characteristics (such as the Window to Wall Ratio) and climatic conditions (covering the European climatic conditions). In summary, this work has sought to contribute to the understanding of the interaction between STPV systems and the building, providing both components manufacturers and construction technicians, valuable information on the energy savings potential of these new construction systems and defining the appropriate design parameters to achieve efficient solutions in both new and retrofitting projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum is the most used catalyst in electrodes for fuel cells due to its high catalytic activity. Polymer electrolyte and direct methanol fuel cells usually include Pt as catalyst in their electrodes. In order to diminish the cost of such electrodes, different Pt deposition methods that permit lowering the metal load whilst maintaining their electroactivity, are being investigated. In this work, the behaviour of electron beam Pt (e-beam Pt) deposited electrodes for fuel cells is studied. Three different Pt loadings have been investigated. The electrochemical behaviour by cyclic voltammetry in H2SO4, HClO4 and in HClO4+MeOH before and after the Pt deposition on carbon cloth has been analysed. The Pt improves the electrochemical properties of the carbon support used. The electrochemical performance of e-beam Pt deposited electrodes was finally studied in a single direct methanol fuel cell (DMFC) and the obtained results indicate that this is a promising and adequate method to prepare fuel cell electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postprint

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding: Work on this article has been partially funded by the European Commission FP7 Program (grant agreement 258583) as part of the DECIDE project. Sole responsibility lies with the authors; the European Commission is not responsible for any use that may be made of the information contained therein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding: Work on this article has been partially funded by the European Commission FP7 Program (grant agreement 258583) as part of the DECIDE project. Sole responsibility lies with the authors; the European Commission is not responsible for any use that may be made of the information contained therein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. InxCd1-xO films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PhD activity described in this Thesis was focused on the study of metal-oxide wide-bandgap materials, aiming at fabricating new optoelectronic devices such as solar-blind UV photodetectors, high power electronics, and gas sensors. Photocurrent spectroscopy and DC photocurrent time evolution were used to investigate the performance of prototypes under different atmospheres, temperatures and excitation wavelengths (or dark conditions). Cathodoluminescence, absorption spectroscopy, XRD and SEM were used to assess structural, morphologic, electrical and optical properties of materials. This thesis is divided into two main sections, each describing the work done on a different metal-oxide semiconductor. 1) MOVPE-grown Ga2O3 thin films for UV solar-blind photodetectors and high power devices The semiconducting oxides, among them Ga2O3, have been employed for several decades as transparent conducting oxide (TCO) electrodes for fabrication of solar cells, displays, electronic, and opto-electronic devices. The interest was mainly confined to such applications, as these materials tend to grow intrinsically n-type, and attempts to get an effective p-type doping has consistently failed. The key requirements of TCO electrodes are indeed high electrical conductivity and good transparency, while crystallographic perfection is a minor issue. Furthermore, for a long period no high-quality substrates and epi-layers were available, which in turn impeded the development of a truly full-oxide electronics. Recently, Ga2O3 has attracted renewed interest, as large single crystals and high-quality homo- and hetero-epitaxial layers became available, which paved the way to novel application areas. Our research group spent the last two years in developing a low temperature (500-700°C) MOVPE growth procedure to obtain thin films of Ga2O3 on different substrates (Dept. of Physics and IMEM-CNR at UNIPR). We obtained a significant result growing on oriented sapphire epitaxial films of high crystalline, undoped, pure phase -Ga2O3 (hexagonal). The crystallographic properties of this phase were investigated by XRD, in order to clarify the lattice parameters of the hexagonal cell. First design and development of solar blind UV photodetectors based on -phase was carried out and the optoelectronic performance is evaluated by means of photocurrent spectroscopy. The UV-response is adequately fast and reliable to render this unusual phase a subject of great interest for future applications. The availability of a hexagonal phase of Ga2O3 stable up to 700°C, belonging to the same space group of gallium nitride, with high crystallinity and tunable electrical properties, is intriguing in view of the development of nitride-based devices, by taking advantage of the more favorable symmetry and epitaxial relationships with respect to the monoclinic β-phase. In addition, annealing at temperatures higher than 700°C demonstrate that the hexagonal phase converts totally in the monoclinic one. 2) ZnO nano-tetrapods: charge transport mechanisms and time-response in optoelectronic devices and sensors Size and morphology of ZnO at the nanometer scale play a key role in tailoring its physical and chemical properties. Thanks to the possibility of growing zinc oxide in a variety of different nanostructures, there is a great variety of applications, among which gas sensors, light emitting diodes, transparent conducting oxides, solar cells. Even if the operation of ZnO nanostructure-based devices has been recently demonstrated, the mechanisms of charge transport in these assembly is still under debate. The candidate performed an accurate investigation by photocurrent spectroscopy and DC-photocurrent time evolution of electrical response of both single-tetrapod and tetrapod-assembly devices. During the research done for this thesis, a thermal activation energy enables the performance of samples at high temperatures (above about 300°C). The energy barrier is related to the leg-to-leg interconnection in the assembly of nanotetrapods. Percolation mechanisms are responsible for both the very slow photo-response (minutes to hours or days) and the significant persistent photocurrent. Below the bandgap energy, electronic states were investigated but their contribution to the photocurrent are two-three order of magnitude lower than the band edge. Such devices are suitable for employ in photodetectors as well as in gas sensors, provided that the mechanism by which the photo-current is generated and gas adsorption on the surface modify the conductivity of the material are known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed metal oxide (MMO) electrodes have been applied to different technologies including chlorine production, organic compounds oxidation, water electrolysis, electroplating, etc. due to their catalytic, optical and electronic properties. Most of the existing MMO electrodes contain either toxic metals or precious metals of the platinum group. The aim of this study was to develop environmentally friendly and cost-effective MMO electrodes for water and organic compounds oxidation. Ti/Ta2O5-SnO2 electrodes of different nominal composition were prepared, and electrochemically and physically characterized. For water oxidation, Ti/SnO2 electrode with 5 at.% of Ta produced the highest electroactivity. Ti/SnO2 electrode with 7.5 at.% of Ta showed the best performance for the oxidation of methylene blue (MB). The electrocatalytic activity of the Ti/Ta2O5-SnO2 electrodes increased with the number of active layers. The maximum current of water oxidation reached 3.5 mA at 2.5 V when the electrode was covered with ten layers of Ta2O5. In case of the oxidation of 0.1 mM MB, eight and ten active layers of Ta2O5 significantly increased the electrode activity. The prepared electrodes have been found applicable for both water electrolysis and organic compounds oxidation.