978 resultados para TIME-DEPENDENT HARTREE
Resumo:
The photodissociation dynamics of the triatomic (or pseudo-triatomic) system in the nonadiabatic multiple electronic states is investigated by employing a time-dependent quantum wavepacket method, while the time propagation of the wave packet is carried out using the split-operator scheme. As a numerical example, the photodissociation dynamics of CH,l in three electronic states (1)Q(1)(A'), (1)Q(1)(A"), and (3)Q(0+) is studied and CH3I is treated as a pseudotriatomic model. The absorption spectra and product vibrational state distributions are calculated and compared with previous theoretical work. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The structures, properties and electron transfer reactivity of the ClO/ClO+ coupling system are studied in this paper at ab initio (HF and MP2) levels and the density functional theory (DFT: B3LYP, B3P86, B3PW91) levels employing 6311 + G(3df) basis set and on the basis of the golden-rule of the time-dependent perturbation theory. Investigations indicate that the results got from the B3LYP method employing 6-311 + G(3df) basis set is in excellent agreement with the experiment. The activation energies, the stabilization energies and the electronic coupling matrix elements have also been calculated by using the B3LYP/6-311 + G(3df) method, and then the electron transfer rates are determined at this level. The electronic coupling matrix element of EC.6 is very small, only 0.03 kcal/mol, while that of EC.7 is the biggest, being 12.41 kcal/mol, the corresponding electron transfer rate is also the fastest among these seven encounter complexes. The averaged electron transfer rate is about 1.672 X 10(11) M-1 s(-1). It is indicated that the structures optimized by B3LYP method are more reliable than the results got from the other four methods. It also testified that the electronic coupling matrix element is the vital factor that significantly affects the electron transfer rate. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The effect of laser fields on the NO interaction potentials is obtained by the calculation of time-resolved photoelectron spectrum (TRPES) using the time-dependent wave-packet method. The calculation not only shows that the overlap of the pump-probe pulses makes some NO molecular "invisible" states visible, but also that the coupling strength and the positions of relevant curves change on increasing the laser intensity. These changed potentials affect their dynamical behavior and influence the shape and position of each peak in TRPES. That the coupling strength of relevant potentials can be changed by the field-matter interaction is consistent with our ab initio calculations.
Resumo:
Marine sponges (Porifera) possess an extraordinary diversity of bioactive metabolites for new drug discovery and development. In vitro cultivation of sponge cells in a bioreactor system is very attractive for the sustainable production of sponge-derived bioactive metabolites; however, it is still a challenging task. The recent establishment of sponge primmorphs, multicellular aggregates from dissociated mixed-cell population (MCP), has been widely acknowledged to hold great promise for cultivation in vitro. Here we present a new method to establish an in vitro sponge primmorph culture from archaeocyte-dominant cell population (ADCP) enriched by a Ficoll gradient, rather than a mixed-cell population (MCP). Our rationale is based upon the totipotency (the ability of a cell to differentiate into other cell types) of archaeocyte cells and the different biological functions of various sponge cell types. A sponge, Hymeniacidon perleve collected from the China Yellow Sea was used as a model system for this investigation. Distinct dynamics of primmorph formation were observed while significant increases in DNA synthesis, cell proliferation (up to threefold), and cell growth (up to fourfold) were achieved. Furthermore, a time-dependent spiculogenesis was clearly demonstrated in our longterm culture, indicating high metabolic activity of primmorphs from the ADCP. This new method represents an important step forward to advance sponge cell culture in vitro that may lead to commercial exploitation of sponge-derived drugs. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Accurate three-dimensional time-dependent quantum wave packet calculations for the N+OH reaction on the (3)A' potential energy surface [Guadagnini, Schatz, and Walch, J. Chem. Phys. 102, 774 (1995)] have been carried out. The calculations show for the first time that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The calculated reaction cross sections indicate that they are a decreasing function of the translational energy, which is in agreement qualitatively with the quasiclassical trajectory calculations. The rate constants obtained from the quantum mechanical calculations are consistent with the quasiclassical trajectory results and the experimental measurements. (C) 2003 American Institute of Physics.
Resumo:
The semirigid vibrating rotor target model is applied to study the isotope effect in reaction H + CH4-->H-2 + CH3 using time-dependent wave-packet method. The reaction probabilities for producing H-2 and HD product channels are calculated. The energy dependence of the reaction probabilities shows oscillating structures for both reaction channels. At low temperature or collision energies, the H atom abstraction is favored due to tunnelling effect. In partially deuterated CHxDy (x + y = 4), the breaking of the C-H bond is favored over that of the C-D bond in the entire energy range studied. In H + CHD3 reaction at high energies, the HD product dominates simply due to statistical factor. (C) 2003 American Institute of Physics.
Resumo:
The structures, properties and electron transfer reactivity of the ClO/ClO- coupling system are studied in this paper at ab initio (UHF and UMP2) levels and the Density Functional Theory (DFT: UB3LYP, UB3P86, UB3PW91) levels employing 6311 + G(3df) basis set and on the basis of the Golden-rule of the time-dependent perturbation theory. Investigations indicate that the results obtained using the UB3LYP method employing 6-311 + G(3df) basis set is in excellent agreement with the experiment. For this coupling system, six stable coupling modes have been found which correspond to six different encounter complexes and denote six different electron transfer mechanism: four O-O directly linked structures (one collinear: D-h, one anti-parallel: C-s, two twist: C-2) and two Cl-O linked structures (cis- and anti- C-s structures). The activation energies, the stabilization energies and the electronic coupling matrix elements have also been calculated for the electron transfer reactions via these six different mechanism at the UB3LYP/6-311 + G(3df) level, and then the electron transfer rates are determined at the same level. The most favorable coupling mode to the electron transfer is the anti-parallel mechanism. The averaged electron transfer rate is about 5.58 X 10(11) M-1 s(-1). It is also implied that the B3LYP method can give more reasonable results for the electron transfer reactivity of this system. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The theoretical model of collisional quantum interference (CQI) in intramolecular rotational energy transfer is described in an atom-diatom system, based on the first Born approximation of time-dependent perturbation theory and considering a long-range interaction potential. The relation between differential and integral interference angles is obtained. For the CO A(1)Pi (v = 0)/e(3)Sigma (-)(v = 1)-He collision system, the calculated integral interference angles are consistent with the experimental values. The physical significance of interference angle and the essential factors it depends on as well as the influence of the short-range interaction on CQI are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of the transition dipole moment function (TDMF) on the dynamics Of O-3 photodissociation in the Hartley band have been exploited by means of exact 3D time-dependent wavepacket method using the SW potential energy surface [J. Chem. Phys. 78 (1983) 7191]. The calculations show that the explicit inclusion of the TDMF results in slight uniform reductions for the intensities of recurrence peaks of the autocorrelation function and a slight broadening of the absorption spectrum, in comparison with the result where the TDMF is assumed to be constant. The pattern of recurrence structures of the autocorrelation function is essentially unaffected. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatom system based on the first-order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is obtained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental temperatures is obtained.
Resumo:
动态土壤侵蚀包括依赖于空间与时间的土壤剥离、细沟的形成、水流中过量泥沙的沉积、沉积泥沙中细沟的再生等物理过程。与泥沙从沉积区域再剥离相关联的细沟再生是细沟变窄加深过程中的一个重要的现象。该文介绍一种实验装置 ,用于测量类似于沉积土壤的疏松土壤材料细沟再生的力学参数。用一种沙壤土进行实验 ,测定了不同团聚体大小和坡度下细沟再生开始和停止所对应的临界水流量。计算出了与沟坡相关的临界剪切应力。这些结果有助于理解细沟的再生及其数量关系 ,以及临界剪切应力与坡度间的定量关系 ;对于发展由沉积土壤再生的细沟演化过程模型特别有用。
Resumo:
The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-T-g (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-T-g (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology.
Resumo:
The adsorption of dopamine (DA) molecules on gold and their interactions with Fe3+ were studied by a microcantilever in a flow cell. The microcantilever bent toward the Au side with the adsorption of DA due to the change Of Surface stress induced by the intermolecular hydrogen bonds of DA or the charge transfer effect between adsorbates and the Substrate. The interaction process between DA adsorbates and Fe3+ was revealed by the deflection curves of microcantilever. As indicated by the appearance of a variation during the decline of curves, two steps were observed in the curve at relative high concentrations of Fe3+. In this case, Fe3+ reacted with DA molecules only in the outer layers and the complexes removed with solution. Then Fe3+ reacted further with DA molecules forming the surface complex in the first layer next to the gold. At this stage, the stability Of Surface complexes was time dependent, i.e., unstable initially and stable finally. This may be due to the surface complexes change from mono-dentate to bi-dentate complexes. In another case, i.e., at relative low concentration of Fe3+, only the first step was observed as indicated by the absence of a variation.
Resumo:
Large-scale GdVO4:Eu3+ nanowires with diameters of about 15 nm and lengths of several micrometers were achieved by a facile hydrothermal method in the presence of disodium ethylenediamine tetraacetate (Na2H2L). The influences of several parameters, such as pH value, reaction temperature, and molar ratio of Na2H2L to Gd3+ on the final products were investigated. The formation mechanism of the as-obtained GdVO4:Eu3+ nanowires is proposed on the basis of time-dependent experiments. It is found that the organic additive Na2H2L, which acts as a shape modifier, has a dynamic effect by adjusting the growth rates of different facets, resulting in the formation of the GdVO4:Eu3+ nanowires. The luminescent spectrum of GdVO4:Eu3+ nanowires shows the strong characteristic dominant emission of the Eu3+ ions at 614 nm.
Resumo:
The large-scale synthesis of the metal-organic framework Eu(1,3,5-BTC)center dot 6H(2)O nanocrystallites with delicate morphologies such as sheaflike, butterflylike, and flowerlike superstructures composed of nanowires have been realized via a simple solution phase method at room temperature. Time-dependent experiments indicate that these superstructures were constructed by the splitting crystal growth mechanism, as has been noted in some minerals in nature. The synthetic parameters such as reaction time, concentration and molar ratio of reactants, surfactant, and reaction temperature all affected the morphology of the Eu(1,3,5-BTC)center dot 6H(2)O architectures. These well-arranged architectures exhibit red emission corresponding to the D-5(0) -> F-7(2) transition of the Eu3+ ions under UV light excitation, and the lifetime is determined to be about 0.22 ms.