801 resultados para Spatial Decision Support System
Resumo:
This work combines symbolic machine learning and multiscale fractal techniques to generate models that characterize cellular rejection in myocardial biopsies and that can base a diagnosis support system. The models express the knowledge by the features threshold, fractal dimension, lacunarity, number of clusters, spatial percolation and percolation probability, all obtained with myocardial biopsies processing. Models were evaluated and the most significant was the one generated by the C4.5 algorithm for the features spatial percolation and number of clusters. The result is relevant and contributes to the specialized literature since it determines a standard diagnosis protocol. © 2013 Springer.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Os conflitos por múltiplos usos da água, no reservatório da UHE Tucuruí, surgem com o anúncio da construção da mega hidrelétrica na região, e os conflitos socioambientais subseqüentes. Aliada a elevação do nível de percepção social em relação aos problemas ambientais cresce também a busca por eficientes processos de gestão e gerenciamento de recursos hídricos. Este estudo objetiva analisar e tipificar os conflitos por múltiplos usos da água no reservatório da UHE Tucuruí, utilizando-se como ferramenta de apoio à decisão o software de modelagem qualitativa NVivo 8, e dessa forma verificar as melhores alternativas a serem adotadas para a conciliação dos usos múltiplos no reservatório. As tipificações realizadas basearam-se na análise dos conflitos, seus componentes, elementos e aspectos, tipo, natureza e origem. Sendo assim, identificaram-se três principais tipos de conflitos no reservatório da UHE Tucuruí: conflitos entre distintos grupos de usuários da água, conflitos por obras hidráulicas e conflitos decorrentes de poluição ambiental. Para este estudo adotou - se uma abordagem qualitativa, através do método de mapeamento cognitivo. Este tipo de mapeamento possibilitou a construção de um modelo cognitivo para a gestão dos conflitos no reservatório de Tucuruí. Sendo assim, o software NVivo 8 possibilitou, além da análise dos dados obtidos nas entrevistas e no levantamento bibliográfico, a construção do modelo gráfico de apoio à gestão de conflitos por múltiplos usos da água. Verificou-se que uma das formas de solução dos conflitos é através da análise destes, em vistas de se investigar os mecanismos adequados para sua resolução, e posterior proposição de medidas estruturais e/ou nãoestruturais para a gestão de recursos hídricos. As principais ações para a solução dos conflitos estão enquadradas nos métodos de resolução institucional de longo prazo. O modelo pode funcionar como suporte ao planejamento e tomada de decisão, tendo em vista os problemas ambientais, a participação dos usuários da água no sistema hídrico, as políticas públicas, e também a gestão integrada dos recursos hídricos. Concluiu- se, então, que a exploração dos recursos hídricos deve proporcionar os múltiplos usos da água em atendimento aos princípios da sustentabilidade ambiental, inseridos num processo de gestão dos conflitos por múltiplos usos da água e gerenciamento integrado dos recursos hídricos.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
In der hier vorliegenden Arbeit wurde am Beispiel der Kraut- und Knollenfäule an Kartoffeln Phytophthora infestans und des Kartoffelkäfers Leptinotarsa decemlineata untersucht, ob durch den Einsatz von Geographischen Informationssystemen (GIS) landwirtschaftliche Schader¬reger¬prognosen für jeden beliebigen Kartoffelschlag in Deutschland erstellt werden können. Um dieses Ziel zu erreichen, wurden die Eingangsparameter (Temperatur und relative Luftfeuchte) der Prognosemodelle für die beiden Schaderreger (SIMLEP1, SIMPHYT1, SIMPHYT3 and SIMBLIGHT1) so aufbereitet, dass Wetterdaten flächendeckend für Deutschland zur Verfügung standen. Bevor jedoch interpoliert werden konnte, wurde eine Regionalisierung von Deutschland in Interpolationszonen durchgeführt und somit Naturräume geschaffen, die einen Vergleich und eine Bewertung der in ihnen liegenden Wetterstationen zulassen. Hierzu wurden die Boden-Klima-Regionen von SCHULZKE und KAULE (2000) modifiziert, an das Wetterstationsnetz angepasst und mit 5 bis 10 km breiten Pufferzonen an der Grenze der Interpolationszonen versehen, um die Wetterstationen so häufig wie möglich verwenden zu können. Für die Interpolation der Wetterdaten wurde das Verfahren der multiplen Regression gewählt, weil dieses im Vergleich zu anderen Verfahren die geringsten Abweichungen zwischen interpolierten und gemessenen Daten aufwies und den technischen Anforderungen am besten entsprach. Für 99 % aller Werte konnten bei der Temperaturberechnung Abweichungen in einem Bereich zwischen -2,5 und 2,5 °C erzielt werden. Bei der Berechnung der relativen Luftfeuchte wurden Abweichungen zwischen -12 und 10 % relativer Luftfeuchte erreicht. Die Mittelwerte der Abweichungen lagen bei der Temperatur bei 0,1 °C und bei der relativen Luftfeuchte bei -1,8 %. Zur Überprüfung der Trefferquoten der Modelle beim Betrieb mit interpolierten Wetterdaten wurden Felderhebungsdaten aus den Jahren 2000 bis 2007 zum Erstauftreten der Kraut- und Knollenfäule sowie des Kartoffelkäfers verwendet. Dabei konnten mit interpolierten Wetterdaten die gleichen und auch höhere Trefferquoten erreicht werden, als mit der bisherigen Berechnungsmethode. Beispielsweise erzielte die Berechnung des Erstauftretens von P. infestans durch das Modell SIMBLIGHT1 mit interpolierten Wetterdaten im Schnitt drei Tage geringere Abweichungen im Vergleich zu den Berechnungen ohne GIS. Um die Auswirkungen interpretieren zu können, die durch Abweichungen der Temperatur und der relativen Luftfeuchte entstanden wurde zusätzlich eine Sensitivitätsanalyse zur Temperatur und relativen Luftfeuchte der verwendeten Prognosemodelle durchgeführt. Die Temperatur hatte bei allen Modellen nur einen geringen Einfluss auf das Prognoseergebnis. Veränderungen der relativen Luftfeuchte haben sich dagegen deutlich stärker ausgewirkt. So lag bei SIMBLIGHT1 die Abweichung durch eine stündliche Veränderung der relativen Luftfeuchte (± 6 %) bei maximal 27 Tagen, wogegen stündliche Veränderungen der Temperatur (± 2 °C) eine Abweichung von maximal 10 Tagen ausmachten. Die Ergebnisse dieser Arbeit zeigen, dass durch die Verwendung von GIS mindestens die gleichen und auch höhere Trefferquoten bei Schaderregerprognosen erzielt werden als mit der bisherigen Verwendung von Daten einer nahegelegenen Wetterstation. Die Ergebnisse stellen einen wesentlichen Fortschritt für die landwirtschaftlichen Schaderregerprognosen dar. Erstmals ist es möglich, bundesweite Prognosen für jeden beliebigen Kartoffelschlag zur Bekämpfung von Schädlingen in der Landwirtschaft bereit zu stellen.
Resumo:
Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Land‐use planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of land‐use planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to land‐use planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to land‐use planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.
Resumo:
A new overground body-weight support system called ZeroG has been developed that allows patients with severe gait impairments to practice gait and balance activities in a safe, controlled manner. The unloading system is capable of providing up to 300 lb of static support and 150 lb of dynamic (or constant force) support using a custom-series elastic actuator. The unloading system is mounted to a driven trolley, which rides along an overhead rail. We evaluated the performance of ZeroG's unloading system, as well as the trolley tracking system, using benchtop and human-subject testing. Average root-mean-square and peak errors in unloading were 2.2 and 7.2 percent, respectively, over the range of forces tested while trolley tracking errors were less than 3 degrees, indicating the system was able to maintain its position above the subject. We believe training with ZeroG will allow patients to practice activities that are critical to achieving functional independence at home and in the community.
Resumo:
Two patterns are among the most important considerations in planning services for the elderly of the future: (1) the current role of family members in supporting older adults and (2) the present high rate of divorce. Thus far, these patterns may not have significantly affected each other. However, if forecasts of increasing service demands by older adults are correct, service planners must consider what resources will be available to the elderly of the future. In this article, literature from a variety of areas is reviewed focusing on one question: How will the currently high rate of divorce affect the family support system of older adults in the future? Current divorce and remarriage patterns could undermine this support system of the elderly. Possible short-and long-term effects of the demands and emotional consequences of divorce are discussed within this context, and implications for public policy are suggested.
Resumo:
The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.
Analysis of spring break-up and its effects on a biomass feedstock supply chain in northern Michigan
Resumo:
Demand for bio-fuels is expected to increase, due to rising prices of fossil fuels and concerns over greenhouse gas emissions and energy security. The overall cost of biomass energy generation is primarily related to biomass harvesting activity, transportation, and storage. With a commercial-scale cellulosic ethanol processing facility in Kinross Township of Chippewa County, Michigan about to be built, models including a simulation model and an optimization model have been developed to provide decision support for the facility. Both models track cost, emissions and energy consumption. While the optimization model provides guidance for a long-term strategic plan, the simulation model aims to present detailed output for specified operational scenarios over an annual period. Most importantly, the simulation model considers the uncertainty of spring break-up timing, i.e., seasonal road restrictions. Spring break-up timing is important because it will impact the feasibility of harvesting activity and the time duration of transportation restrictions, which significantly changes the availability of feedstock for the processing facility. This thesis focuses on the statistical model of spring break-up used in the simulation model. Spring break-up timing depends on various factors, including temperature, road conditions and soil type, as well as individual decision making processes at the county level. The spring break-up model, based on the historical spring break-up data from 27 counties over the period of 2002-2010, starts by specifying the probability distribution of a particular county’s spring break-up start day and end day, and then relates the spring break-up timing of the other counties in the harvesting zone to the first county. In order to estimate the dependence relationship between counties, regression analyses, including standard linear regression and reduced major axis regression, are conducted. Using realizations (scenarios) of spring break-up generated by the statistical spring breakup model, the simulation model is able to probabilistically evaluate different harvesting and transportation plans to help the bio-fuel facility select the most effective strategy. For early spring break-up, which usually indicates a longer than average break-up period, more log storage is required, total cost increases, and the probability of plant closure increases. The risk of plant closure may be partially offset through increased use of rail transportation, which is not subject to spring break-up restrictions. However, rail availability and rail yard storage may then become limiting factors in the supply chain. Rail use will impact total cost, energy consumption, system-wide CO2 emissions, and the reliability of providing feedstock to the bio-fuel processing facility.
Resumo:
Das intelligente Tutorensystem LARGO für die Rechtswissenschaften soll Jurastudenten helfen, Argumentationsstrategien zu lernen. Im verwendeten Ansatz werden Gerichtsprotokolle als Lernmaterialien verwendet: Studenten annotieren diese und erstellen graphische Repräsentationen des Argumentationsverlaufs. Das System kann dabei zur Reflexion über die von Anwälten vorgebrachten Argumente anregen und Lernende auf mögliche Schwächen in ihrer Analyse des Disputs hinweisen. Zur Erkennung von Schwächen verwendet das System Graphgrammatiken und kollaborative Filtermechanismen. Dieser Artikel stellt dar, wie in LARGO auf Basis der Bestimmung eines „Benutzungskontextes“ die Rückmeldungen im System benutzungsadaptiv gestaltet werden. Weiterhin diskutieren wir auf Basis der Ergebnisse einer kontrollierten Studie mit dem System, welche mit Jurastudierenden an der University of Pittsburgh stattfand, in wie weit der automatisch bestimmte Benutzungskontext zur Vorhersage von Lernerfolgen bei Studenten verwendbar ist.
Resumo:
Logistiknetzwerke von Unternehmen wachsen sehr schnell und werden immer komplexer. Unternehmen wissen oft nicht, von welchen anderen Unternehmen sie abhängig sind und welche geschäftskritischen Risiken sich daraus für sie ergeben. Aus diesem Grund wird in diesem Artikel ein Konzept eines proaktiven Ri-sikomanagements in Logistiknetzwerken vorgestellt. Das Konzept basiert auf der Big Data Technologie und verwendet zur Identifikation von Risiken und zum Aufbau eines Logistiknetzwerkes neben internen Unternehmensdaten auch externe Daten, z. B. Social Media Plattformen oder andere Datenportale. Diese Daten werden ausgewertet und mit Risiken behaftete Beziehungen werden dem Bediener grafisch angezeigt. Zusätzlich dazu kann das System dem Benutzer mögliche Alternativen zur Vermeidung dieser Risiken aufzeigen und somit zur Entscheidungsunterstützung genutzt werden.
Resumo:
As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4–46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium, phosphorus, iron, zinc, copper, manganese and nickel levels tended to be higher in the grains of experimental plants. It remains a challenge for future experiments to further adapt the nutrient supply in order to improve senescence of vegetative plant parts, harvest index and the composition of bread wheat grains.
Resumo:
Desertification research conventionally focuses on the problem – that is, degradation – while neglecting the appraisal of successful conservation practices. Based on the premise that Sustainable Land Management (SLM) experiences are not sufficiently or comprehensively documented, evaluated, and shared, the World Overview of Conservation Approaches and Technologies (WOCAT) initiative (www.wocat.net), in collaboration with FAO’s Land Degradation Assessment in Drylands (LADA) project (www.fao.org/nr/lada/) and the EU’s DESIRE project (http://www.desire-project.eu/), has developed standardised tools and methods for compiling and evaluating the biophysical and socio-economic knowledge available about SLM. The tools allow SLM specialists to share their knowledge and assess the impact of SLM at the local, national, and global levels. As a whole, the WOCAT–LADA–DESIRE methodology comprises tools for documenting, self-evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing and decision support in the field, at the planning level, and in scaling up identified good practices. SLM depends on flexibility and responsiveness to changing complex ecological and socioeconomic causes of land degradation. The WOCAT tools are designed to reflect and capture this capacity of SLM. In order to take account of new challenges and meet emerging needs of WOCAT users, the tools are constantly further developed and adapted. Recent enhancements include tools for improved data analysis (impact and cost/benefit), cross-scale mapping, climate change adaptation and disaster risk management, and easier reporting on SLM best practices to UNCCD and other national and international partners. Moreover, WOCAT has begun to give land users a voice by backing conventional documentation with video clips straight from the field. To promote the scaling up of SLM, WOCAT works with key institutions and partners at the local and national level, for example advisory services and implementation projects. Keywords: Sustainable Land Management (SLM), knowledge management, decision-making, WOCAT–LADA–DESIRE methodology.