959 resultados para Solid-liquid interface


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coalescence and mixing of a sessile and an impacting liquid droplet on a solid surface are studied experimentally and numerically in terms of lateral separation and droplet speed. Two droplet generators are used to produce differently colored droplets. Two high-speed imaging systems are used to investigate the impact and coalescence of the droplets in color from a side view with a simultaneous gray-scale view from below. Millimeter-sized droplets were used with dynamical conditions, based on the Reynolds and Weber numbers, relevant to microfluidics and commercial inkjet printing. Experimental measurements of advancing and receding static contact angles are used to calibrate a contact angle hysteresis model within a lattice Boltzmann framework, which is shown to capture the observed dynamics qualitatively and the final droplet configuration quantitatively. Our results show that no detectable mixing occurs during impact and coalescence of similar-sized droplets, but when the sessile droplet is sufficiently larger than the impacting droplet vortex ring generation can be observed. Finally we show how a gradient of wettability on the substrate can potentially enhance mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tunable liquid crystal (LC) lens designed for a holographic projection system is demonstrated. By using a single patterned electrode LC lens, a solid lens and an encoded Fresnel lens on the LCoS panel, we can maintain the image size of the holographic projector with different wavelengths (λ:674nm, 532nm and 445nm) . The zoom ratio of the holographic projection system depends on the lens power of the solid lens and the tunable lens power of the LC lens. The optical zoom function can help to solve the image size mismatching problem of the holographic projection system. © 2013 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet-target interface--this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive and selective liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantitative determination of microcystin-LR (MC-LR) and its glutathione conjugate (MC-LR-GSH) in fish tissues. The analytes were extracted from fish liver and kidney using 0.01 M EDTA-Na-2-5% acetic acid, followed by a solid-phase extraction (SPE) on Oasis HLB and silica cartridges. High-performance liquid chromatography (HPLC) with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MC-LR and its glutathione conjugate in fish liver and kidney. Recoveries of analytes were assessed at three concentrations (0.2, 1.0, and 5 mu g g(-1) dry weight [DW]) and ranged from 91 to 103% for MC-LR, and from 65.0 to 75.7% for MC-LR-GSH. The assay was linear within the range from 0.02 to 5.0 mu g g(-1) DW, with a limit of quantification (LOQ) of 0.02 mu g g(-1) DW. The limit of detection (LOD) of the method was 0.007 mu g g(-1) DW in both fish liver and kidney. The overall precision was determined on three different days. The values for within- and between-day precision in liver and kidney were within 15%. This method was applied to the identification and quantification of MC-LR and its glutathione conjugate in liver and kidney of fish with acute exposure of MC-LR. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ratio of methanol., water and trifluoroacetic acid ( TFA) was regulated to change the polarity and the pH of the rinse solution and the eluent, so as to improve the high performance liquid chromatography HPLC) detection method for trace microcystines (MCs) in natural water bodies. The results showed that 40 % similar to 45 % methanol-water solution containing 0. 1 % TFA could get good effects on the rinse of impurity, and 70% methanol-water solution containing 0. 1% TFA could elute all the MCs in solid phase extraction ( SPE) cartridge ( C-18), In this way. it is suggested that, in analysis of environmental samples with high concentration of impurity, impurity should be washed with 40% similar to 45% methanol-water solution containing 0. 1% TFA, and MCs should be eluted with 70% similar to 100% methanol-water solution containing 0. 1% TFA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A macro matrix solid-phase dispersion (MSPD) method was developed to extract 266 pesticides from apple juice samples prior to gas chromatography-mass selective detection (GC-MSD) determination. A 10 g samples was mixed with 20 g diatomaceous earth. The mixture was transferred into a glass column. Pesticide residues were leached with a 160 mL hexane-dichloromethane (1:1) at 5 mL/min. Two hundred and sixty-six pesticides were divided into three groups and detected by GC-MSD under selective ion monitoring. The proposed method takes advantage of both liquid-liquid extraction and conventional MSPD methods. Application was illustrated by the analysis of 236 apple juice samples produced in Shaanxi province China mainland this year. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials. © 2014 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, both,solid phase microextraction (SPME) and solid phase extraction(SPE) were used to enrich organochlorine compounds in water samples and analyzed by gas chromatography with electron capture detector. The operating conditions of SPME have been studied and different kinds of solid phase were compared. Linear alkybenzene sulfonate(LAS) was added to the samples to investigate its effect on the analysis. The results indicated that polyacrylate was better than other commercial solid phases in extraction of moderated polar organic compounds and the sensitivity of SPME was higher than SPE. LAS affect much in liquid-liquid extraction and headspace SPME; but it has little effect on SPE and direct-SPME method. The applications showed that SPME was a fast and effective method in sample preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hexangular indium nitride nanoflower pattern is observed from scanning electron microscopy and atomic force microscopy. The sample is grown on c-plane (0001) sapphire by metal organic chemical vapor deposition with intentional introduction of hydrogen gas. With the aid of hydrogen, a stable existence of metallic indium is achieved. This will induce the growth of InN nanoflowers via self-catalysis vapor-liquid-solid (VLS) process. It is found that the VLS process is modulated by the interface kinetics and thermodynamics among the sapphire substrate, indium, and InN, which leads to the special morphology of the authors' InN nanoflower pattern. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaSb based cells as receivers in thermophotovoltaic system have attracted great interest and been extensively studied in the recent 15 years. Although nowadays the manufacturing technologies have made a great progress, there are still some details need to make a further study. In this paper, undoped and doped GaSb layers were grown on n-GaSb (100) substrates from both Ga-rich and Sb-rich solutions using liquid phase epitaxy (LPE) technique. The nominal segregation coefficients k of intentional doped Zn were 1.4 and 8.8 determined from the two kinds of GaSb epitaxial layers. Additionally, compared with growing from Ga-rich solutions, the growing processes from Sb-rich solutions were much easier to control and the surface morphologies of epitaxial layers were smoother. Further-more, in order to broaden the absorbing edge, Ga1-xInxAsySb1-y quaternary alloys were grown on both GaSb and InAs substrates from In-rich solutions, under different temperature respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid acid 40SiO(2)/TiO2-SO42- and solid base 30K(2)CO(3)/Al2O3-NaOH were prepared and compared with catalytic esterification activity according to the model reaction. Upgrading bio-oil by solid acid and solid base catalysts in the conditioned experiment was investigated, in which dynamic viscosities of bio-oil was lowered markedly, although 8 months of aging did not show much viscosity to improve its fluidity and enhance its stability positively. Even the dehydration by 3A molecular sieve still kept the fluidity well. The density of upgraded bio-oil was reduced from 1.24 to 0.96 kg/m(3), and the gross calorific value increased by 50.7 and 51.8%, respectively. The acidity of upgraded bio-oil was alleviated by the solid base catalyst but intensified by the solid acid catalyst for its strong acidification. The results of gas chromatography-mass spectrometry analysis showed that the ester reaction in the bio-oil was promoted by both solid acid and solid base catalysts and that the solid acid catalyst converted volatile and nonvolatile organic acids into esters and raised their amount by 20-fold. Besides the catalytic esterification, the solid acid catalyst carried out the carbonyl addition of alcohol to acetals. Some components of bio-oil undertook the isomerization over the solid base catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface modes and LO phonon modes in GaAs/AlAs quantum wells is investigated within the isotropic dispersionless dielectric continuum with nodes in displacement u at the interfaces as boundary condition. The interface modes are found to be purely interface polarization charge effect while LO eigenmodes induce only bulk polarization charges. Analytical expression is determined for LO eigenmodes and is found in good agreement with realistic model calculation, and its labeling index is interpreted as the helicity of electric field as it travels from one side to the other side of the slab.