992 resultados para Software agents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debido a la necesidad de diferenciarse y hacer frente a la competencia, las empresas han apostado por desarrollar operaciones que den valor al cliente, por eso muchas de ellas han visto en las herramientas lean la oportunidad para mejorar sus operaciones. Esta mejora implica la reducción de dinero, personas, equipos grandes, inventario y espacio, con dos objetivos: eliminar despilfarro y reducir la variabilidad. Para conseguir los objetivos estratégicos de la empresa es imprescindible qué éstos estén alineados con los planes de la gerencia a nivel medio y a su vez con el trabajo realizado por los empleados para asegurar que cada persona está alineada en la misma dirección y al mismo tiempo. Ésta es la filosofía de la planificación estratégica. Por ello uno de los objetivos de este proyecto será el desarrollar una herramienta que facilite la exposición de los objetivos de la empresa y la comunicación de los mismos a todos los niveles de la organización para a partir de ellos y tomando como referencia la necesidad de reducir inventarios en la cadena de suministro se realizará un estudio de la producción de un componente de control del aerogenerador para conseguir nivelarla y reducir su inventario de producto terminado. Los objetivos particulares en este apartado serán reducir el inventario en un 28%, nivelar la producción reduciendo la variabilidad del 31% al 24%, mantener un stock máximo de 24 unidades garantizando el suministro ante una demanda variable, incrementar la rotación del inventario en un 10% y establecer un plan de acción para reducir el lead time entre un 40-50%. Todo ello será posible gracias a la realización del mapa de valor presente y futuro para eliminar desperdicios y crear un flujo continuo y el cálculo de un supermercado que mantenga el stock en un nivel óptimo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la era digital actual, Internet forma parte de nuestras vidas, y ha aportado cambios a lasociedad globalizada. Algunos de estos cambios nos permiten nuevas formas de relacionarnos y degestionar el conocimiento, dando sentido al término que hoy entendemos como sociedad-red.Por eso, en el entorno que nos envuelve existen continuamente acciones colaborativas globales quefomentan la comunicación y se comparte información de diversos tipos, con la finalidad deaprender y mantenerse constantemente informado. Específicamente, los centros educativos no sequedan al margen ya que requiere preparar estudiantes para esta sociedad.Estos cambios en la sociedad presentan grandes desafíos para el centro educativo, que nopermiten ser afrontados solamente desde el aula. Los centros requieren adaptarse a un modelocompatible con la sociedad-red, y por ello, se sugieren un modelo centro-red, que presente unaestructura de una organización compatible con la era en el que estamos inmersos.Las redes de colaboración en los centros permite intercambiar información y aportar valor a laeducación con el objetivo de la mejora educativa. En este sentido, los centros educativos debendisponer de características que permitan ser flexibles, adaptarse a los agentes y organizaciones quele envuelven. Pero la estructura actual de un centro educativo es rígida y por tanto esta evoluciónrepresenta uno de los mayores desafíos para el sistema educativo.En esta linea, en los centros de Formación Profesional existe una tendencia hacia modeloscolaborativos con el tejido empresarial, entre otros agentes, y es en este punto donde este proyectopretende centrar el foco de la investigación. Con más exactitud, en la creación de una red decolaboración con el agente que el centro educativo seleccione.Específicamente las TIC forman un papel esencial, y se deben poner al servicio del problemaque apuntábamos para ayudar a solventarlo. En este sentido, es adecuado un diseño del artefactocon Software Libre que tiene múltiples beneficios para este objetivo, pero que destacamos el que ami parecer es el más importante; la vinculación con la filosofía de compartir el conocimiento, quegarantiza la simbiosis con la red colaborativa y es por esta razón que el tema de la investigación esrelevante para el centro educativo.Tal y como se mencionaba previamente, las TIC pueden ayudar a fomentar la red colaborativa,pero no sólo el artefacto TIC generado en este proyecto debe cumplir características como laflexibilidad, también es crítico que el centro educativo y los agentes de la red interioricen la culturacolaborativa en sus acciones con la implicación y compromiso que se requiere. Pero como podemosPágina 6Universitat Oberta de Catalunya Trabajo Final de Máster - Software Libreimaginar, ese cambio de cultura, no es una tarea sencilla y presenta problemas. Para mitigarlos yfomentar la cultura en red, se requieren procesos específicos que permitan incorporarla en la medidade lo posible. Para ello, la combinación de la innovación sistémica y el diseño de la investigación eneducación resultan metodologías apropiadas.Por eso, investigaremos durante este proceso cómo las redes de colaboración y el SoftwareLibre permiten adaptar el centro al entorno, cómo pueden ayudar al centro a potenciar la FormaciónProfesional y garantizar la durabilidad de las acciones, con el objetivo que perdure el conocimientoy la propia red de colaboración para una mejora educativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto busca analizar, diseñar e implementar una nueva solución de telefonía para el Centro Social de Oficiales de la Policía Nacional contemplando la posibilidad de optar por una migración hacia un sistema VoIP bajo software libre con Asterisk. En consecuencia, se deben evaluar las tecnologías actuales buscando proveer nuevas funcionalidades en el servicio telefónico generando bajos costos en su implementación, funcionamiento y mantenimiento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy and safety of anti-infective treatments are associated with the drug blood concentration profile, which is directly correlated with a dosing adjustment to the individual patient's condition. Dosing adjustments to the renal function recommended in reference books are often imprecise and infrequently applied in clinical practice. The recent generalisation of the KDOQI (Kidney Disease Outcome Quality Initiative) staging of chronically impaired renal function represents an opportunity to review and refine the dosing recommendations in patients with renal insufficiency. The literature has been reviewed and compared to a predictive model of the fraction of drug cleared by the kidney based on the Dettli's principle. Revised drug dosing recommendations integrating these predictive parameters are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-strip agents can effect the temperature susceptibility of asphalt cement. This concern was expressed at the 33rd Annual Bituminous Conference in St. Paul, Minnesota by Mr. David Gendell, Director of Highway Operations. This study compares viscosity-temperature relationships of asphalt cement with and without anti-strip agent addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anàlisi empírica de la imatge turística de la ciutat de Girona que transmeten els agents orgànics mitjançant els blogs d’Internet i, a partir d’aquí, deducció de quina és la imatge percebuda pels turistes potencials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protease-sensitive macromolecular prodrugs have attracted interest for bio-responsive drug delivery to sites with up-regulated proteolytic activities such as inflammatory or cancerous lesions. Here we report the development of a novel polymeric photosensitizer prodrug (T-PS) to target thrombin, a protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients, for minimally invasive photodynamic synovectomy. In T-PS, multiple photosensitizer units are tethered to a polymeric backbone via short, thrombin-cleavable peptide linkers. Photoactivity of the prodrug is efficiently impaired due to energy transfer between neighbouring photosensitizer units. T-PS activation by exogenous and endogenous thrombin induced an increase in fluorescence emission by a factor of 16 after in vitro digestion and a selective fluorescence enhancement in arthritic lesions in vivo, in a collagen-induced arthritis mouse model. In vitro studies on primary human synoviocytes showed a phototoxic effect only after enzymatic digestion of the prodrug and light irradiation, thus demonstrating the functionality of T-PS induced PDT. The developed photosensitizer prodrugs combine the passive targeting capacity of macromolecular drug delivery systems with site-selective photosensitizer release and activation. They illuminate lesions with pathologically enhanced proteolytic activity and induce cell death, subsequent to irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manual describes how to use the Iowa Bridge Backwater software. It also documents the methods and equations used for the calculations. The main body describes how to use the software and the appendices cover technical aspects. The Bridge Backwater software performs 5 main tasks: Design Discharge Estimation; Stream Rating Curves; Floodway Encroachment; Bridge Backwater; and Bridge Scour. The intent of this program is to provide a simplified method for analysis of bridge backwater for rural structures located in areas with low flood damage potential. The software is written in Microsoft Visual Basic 6.0. It will run under Windows 95 or newer versions (i.e. Windows 98, NT, 2000, XP and later).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With six targeted agents approved (sorafenib, sunitinib, temsirolimus, bevacizumab [+interferon], everolimus and pazopanib), many patients with metastatic renal cell carcinoma (mRCC) will receive multiple therapies. However, the optimum sequencing approach has not been defined. A group of European experts reviewed available data and shared their clinical experience to compile an expert agreement on the sequential use of targeted agents in mRCC. To date, there are few prospective studies of sequential therapy. The mammalian target of rapamycin (mTOR) inhibitor everolimus was approved for use in patients who failed treatment with inhibitors of vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) based on the results from a Phase III placebo-controlled study; however, until then, the only licensed agents across the spectrum of mRCC were VEGF(R) inhibitors (sorafenib, sunitinib and bevacizumab + interferon), and as such, a large body of evidence has accumulated regarding their use in sequence. Data show that sequential use of VEGF(R) inhibitors may be an effective treatment strategy to achieve prolonged clinical benefit. The optimal place of each targeted agent in the treatment sequence is still unclear, and data from large prospective studies are needed. The Phase III AXIS study of second-line sorafenib vs. axitinib (including post-VEGF(R) inhibitors) has completed, but the data are not yet published; other ongoing studies include the Phase III SWITCH study of sorafenib-sunitinib vs. sunitinib-sorafenib (NCT00732914); the Phase III 404 study of temsirolimus vs. sorafenib post-sunitinib (NCT00474786) and the Phase II RECORD 3 study of sunitinib-everolimus vs. everolimus-sunitinib (NCT00903175). Until additional data are available, consideration of patient response and tolerability to treatment may facilitate current decision-making regarding when to switch and which treatment to switch to in real-life clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la actualidad las tecnologías de la información son utilizadas en todos los ámbitos empresariales. Desde sistemas de gestión (ERPs) pasando por la gestión documental, el análisis de información con sistema de Bussines Intelligence, pudiendo incluso convertirse en toda una nueva plataforma para proveer a las empresas de nuevos canales de venta, como es el caso deInternet.De la necesidad inicial de nuestro cliente en comenzar a expandirse por un nuevo canal de venta para poder llegar a nuevos mercados y diversificar sus clientes se inicia la motivación de este TFC.Dadas las características actuales de las tecnologías de la información e internet, estas conforman un binomio perfecto para definir este TFC que trata todos los aspectos necesarios para llegar a obtener un producto final como es un portal web inmobiliario adaptado a los requisitos demandados por los usuarios actuales de Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.