960 resultados para Semantic Repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer vision system that has to interact in natural language needs to understand the visual appearance of interactions between objects along with the appearance of objects themselves. Relationships between objects are frequently mentioned in queries of tasks like semantic image retrieval, image captioning, visual question answering and natural language object detection. Hence, it is essential to model context between objects for solving these tasks. In the first part of this thesis, we present a technique for detecting an object mentioned in a natural language query. Specifically, we work with referring expressions which are sentences that identify a particular object instance in an image. In many referring expressions, an object is described in relation to another object using prepositions, comparative adjectives, action verbs etc. Our proposed technique can identify both the referred object and the context object mentioned in such expressions. Context is also useful for incrementally understanding scenes and videos. In the second part of this thesis, we propose techniques for searching for objects in an image and events in a video. Our proposed incremental algorithms use the context from previously explored regions to prioritize the regions to explore next. The advantage of incremental understanding is restricting the amount of computation time and/or resources spent for various detection tasks. Our first proposed technique shows how to learn context in indoor scenes in an implicit manner and use it for searching for objects. The second technique shows how explicitly written context rules of one-on-one basketball can be used to sequentially detect events in a game.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior research shows that electronic word of mouth (eWOM) wields considerable influence over consumer behavior. However, as the volume and variety of eWOM grows, firms are faced with challenges in analyzing and responding to this information. In this dissertation, I argue that to meet the new challenges and opportunities posed by the expansion of eWOM and to more accurately measure its impacts on firms and consumers, we need to revisit our methodologies for extracting insights from eWOM. This dissertation consists of three essays that further our understanding of the value of social media analytics, especially with respect to eWOM. In the first essay, I use machine learning techniques to extract semantic structure from online reviews. These semantic dimensions describe the experiences of consumers in the service industry more accurately than traditional numerical variables. To demonstrate the value of these dimensions, I show that they can be used to substantially improve the accuracy of econometric models of firm survival. In the second essay, I explore the effects on eWOM of online deals, such as those offered by Groupon, the value of which to both consumers and merchants is controversial. Through a combination of Bayesian econometric models and controlled lab experiments, I examine the conditions under which online deals affect online reviews and provide strategies to mitigate the potential negative eWOM effects resulting from online deals. In the third essay, I focus on how eWOM can be incorporated into efforts to reduce foodborne illness, a major public health concern. I demonstrate how machine learning techniques can be used to monitor hygiene in restaurants through crowd-sourced online reviews. I am able to identify instances of moral hazard within the hygiene inspection scheme used in New York City by leveraging a dictionary specifically crafted for this purpose. To the extent that online reviews provide some visibility into the hygiene practices of restaurants, I show how losses from information asymmetry may be partially mitigated in this context. Taken together, this dissertation contributes by revisiting and refining the use of eWOM in the service sector through a combination of machine learning and econometric methodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part 19: Knowledge Management in Networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object recognition has long been a core problem in computer vision. To improve object spatial support and speed up object localization for object recognition, generating high-quality category-independent object proposals as the input for object recognition system has drawn attention recently. Given an image, we generate a limited number of high-quality and category-independent object proposals in advance and used as inputs for many computer vision tasks. We present an efficient dictionary-based model for image classification task. We further extend the work to a discriminative dictionary learning method for tensor sparse coding. In the first part, a multi-scale greedy-based object proposal generation approach is presented. Based on the multi-scale nature of objects in images, our approach is built on top of a hierarchical segmentation. We first identify the representative and diverse exemplar clusters within each scale. Object proposals are obtained by selecting a subset from the multi-scale segment pool via maximizing a submodular objective function, which consists of a weighted coverage term, a single-scale diversity term and a multi-scale reward term. The weighted coverage term forces the selected set of object proposals to be representative and compact; the single-scale diversity term encourages choosing segments from different exemplar clusters so that they will cover as many object patterns as possible; the multi-scale reward term encourages the selected proposals to be discriminative and selected from multiple layers generated by the hierarchical image segmentation. The experimental results on the Berkeley Segmentation Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and efficiency of our object proposal model. Additionally, we validate our object proposals in simultaneous segmentation and detection and outperform the state-of-art performance. To classify the object in the image, we design a discriminative, structural low-rank framework for image classification. We use a supervised learning method to construct a discriminative and reconstructive dictionary. By introducing an ideal regularization term, we perform low-rank matrix recovery for contaminated training data from all categories simultaneously without losing structural information. A discriminative low-rank representation for images with respect to the constructed dictionary is obtained. With semantic structure information and strong identification capability, this representation is good for classification tasks even using a simple linear multi-classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ontology engineering research community has focused for many years on supporting the creation, development and evolution of ontologies. Ontology forecasting, which aims at predicting semantic changes in an ontology, represents instead a new challenge. In this paper, we want to give a contribution to this novel endeavour by focusing on the task of forecasting semantic concepts in the research domain. Indeed, ontologies representing scientific disciplines contain only research topics that are already popular enough to be selected by human experts or automatic algorithms. They are thus unfit to support tasks which require the ability of describing and exploring the forefront of research, such as trend detection and horizon scanning. We address this issue by introducing the Semantic Innovation Forecast (SIF) model, which predicts new concepts of an ontology at time t + 1, using only data available at time t. Our approach relies on lexical innovation and adoption information extracted from historical data. We evaluated the SIF model on a very large dataset consisting of over one million scientific papers belonging to the Computer Science domain: the outcomes show that the proposed approach offers a competitive boost in mean average precision-at-ten compared to the baselines when forecasting over 5 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic relations are an important element in the construction of ontology-based linguistic resources and models of problem domains. Nevertheless, they remain under-specified. This is a pervasive problem in both Software Engineering and Artificial Intelligence. Thus, we find semantic links that can have multiple interpretations, abstractions that are not enough to represent the relation richness of problem domains, and even poorly structured taxonomies. However, if provided with precise semantics, some of these problems can be avoided, and meaningful operations can be performed on them that can be an aid in the ontology construction process. In this paper we present some insightful issues about the representation of relations. Moreover, the initiatives aiming to provide relations with clear semantics are explained and the inclusion of their core ideas as part of a methodology for the development of ontology-based linguistic resources is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic relations are an important element in the construction of ontologies and models of problem domains. Nevertheless, they remain fuzzy or under-specified. This is a pervasive problem in software engineering and artificial intelligence. Thus, we find semantic links that can have multiple interpretations in wide-coverage ontologies, semantic data models with abstractions that are not enough to capture the relation richness of problem domains, and improperly structured taxonomies. However, if relations are provided with precise semantics, some of these problems can be avoided, and meaningful operations can be performed on them. In this paper we present some insightful issues about the modeling, representation and usage of relations including the available taxonomy structuring methodologies as well as the initiatives aiming to provide relations with precise semantics. Moreover, we explain and propose the control of relations as a key issue for the coherent construction of ontologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examines two commitments inherent in Resource Description Framework (RDF): intertextuality and rationalism. After introducing how rationalism has been studied in knowledge organization, this paper then introduces the concept of bracketed-rationalism. This paper closes with a discussion of ramifications of intertextuality and bracketed rationalism on evaluation of RDF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many years have passed since Berners-Lee envi- sioned the Web as it should be (1999), but still many information professionals do not know their precise role in its development, especially con- cerning ontologies –considered one of its main elements. Why? May it still be a lack of under- standing between the different academic commu- nities involved (namely, Computer Science, Lin- guistics and Library and Information Science), as reported by Soergel (1999)? The idea behind the Semantic Web is that of several technologies working together to get optimum information re- trieval performance, which is based on proper resource description in a machine-understandable way, by means of metadata and vocabularies (Greenberg, Sutton and Campbell, 2003). This is obviously something that Library and Information Science professionals can do very well, but, are we doing enough? When computer scientists put on stage the ontology paradigm they were asking for semantically richer vocabularies that could support logical inferences in artificial intelligence as a way to improve information retrieval systems. Which direction should vocabulary development take to contribute better to that common goal? The main objective of this paper is twofold: 1) to identify main trends, issues and problems con- cerning ontology research and 2) to identify pos- sible contributions from the Library and Information Science area to the development of ontologies for the semantic web. To do so, our paper has been structured in the following manner. First, the methodology followed in the paper is reported, which is based on a thorough literature review, where main contributions are analysed. Then, the paper presents a discussion of the main trends, issues and problems concerning ontology re- search identified in the literature review. Recom- mendations of possible contributions from the Library and Information Science area to the devel- opment of ontologies for the semantic web are finally presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a conceptual framework and meth- odology for managing scheme versioning for the Semantic Web. The first part of the paper introduces the concept of vocabulary encoding schemes, distinguished from metadata schemas, and discusses the characteristics of changes in schemes. The paper then presents a proposal to use a value record–similar to a term record in thesaurus management techniques–to manage scheme versioning challenges for the Semantic Web. The con-clusion identifies future research directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les applications Web en général ont connu d’importantes évolutions technologiques au cours des deux dernières décennies et avec elles les habitudes et les attentes de la génération de femmes et d’hommes dite numérique. Paradoxalement à ces bouleversements technologiques et comportementaux, les logiciels d’enseignement et d’apprentissage (LEA) n’ont pas tout à fait suivi la même courbe d’évolution technologique. En effet, leur modèle de conception est demeuré si statique que leur utilité pédagogique est remise en cause par les experts en pédagogie selon lesquels les LEA actuels ne tiennent pas suffisamment compte des aspects théoriques pédagogiques. Mais comment améliorer la prise en compte de ces aspects dans le processus de conception des LEA? Plusieurs approches permettent de concevoir des LEA robustes. Cependant, un intérêt particulier existe pour l’utilisation du concept patron dans ce processus de conception tant par les experts en pédagogie que par les experts en génie logiciel. En effet, ce concept permet de capitaliser l’expérience des experts et permet aussi de simplifier de belle manière le processus de conception et de ce fait son coût. Une comparaison des travaux utilisant des patrons pour concevoir des LEA a montré qu’il n’existe pas de cadre de synergie entre les différents acteurs de l’équipe de conception, les experts en pédagogie d’un côté et les experts en génie logiciel de l’autre. De plus, les cycles de vie proposés dans ces travaux ne sont pas complets, ni rigoureusement décrits afin de permettre de développer des LEA efficients. Enfin, les travaux comparés ne montrent pas comment faire coexister les exigences pédagogiques avec les exigences logicielles. Le concept patron peut-il aider à construire des LEA robustes satisfaisant aux exigences pédagogiques ? Comme solution, cette thèse propose une approche de conception basée sur des patrons pour concevoir des LEA adaptés aux technologies du Web. Plus spécifiquement, l’approche méthodique proposée montre quelles doivent être les étapes séquentielles à prévoir pour concevoir un LEA répondant aux exigences pédagogiques. De plus, un répertoire est présenté et contient 110 patrons recensés et organisés en paquetages. Ces patrons peuvent être facilement retrouvés à l’aide du guide de recherche décrit pour être utilisés dans le processus de conception. L’approche de conception a été validée avec deux exemples d’application, permettant de conclure d’une part que l’approche de conception des LEA est réaliste et d’autre part que les patrons sont bien valides et fonctionnels. L’approche de conception de LEA proposée est originale et se démarque de celles que l’on trouve dans la littérature car elle est entièrement basée sur le concept patron. L’approche permet également de prendre en compte les exigences pédagogiques. Elle est générique car indépendante de toute plateforme logicielle ou matérielle. Toutefois, le processus de traduction des exigences pédagogiques n’est pas encore très intuitif, ni très linéaire. D’autres travaux doivent être réalisés pour compléter les résultats obtenus afin de pouvoir traduire en artéfacts exploitables par les ingénieurs logiciels les exigences pédagogiques les plus complexes et les plus abstraites. Pour la suite de cette thèse, une instanciation des patrons proposés serait intéressante ainsi que la définition d’un métamodèle basé sur des patrons qui pourrait permettre la spécification d’un langage de modélisation typique des LEA. L’ajout de patrons permettant d’ajouter une couche sémantique au niveau des LEA pourrait être envisagée. Cette couche sémantique permettra non seulement d’adapter les scénarios pédagogiques, mais aussi d’automatiser le processus d’adaptation au besoin d’un apprenant en particulier. Il peut être aussi envisagé la transformation des patrons proposés en ontologies pouvant permettre de faciliter l’évaluation des connaissances de l’apprenant, de lui communiquer des informations structurées et utiles pour son apprentissage et correspondant à son besoin d’apprentissage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivo: Identificar las barreras para la unificación de una Historia Clínica Electrónica –HCE- en Colombia. Materiales y Métodos: Se realizó un estudio cualitativo. Se realizaron entrevistas semiestructuradas a profesionales y expertos de 22 instituciones del sector salud, de Bogotá y de los departamentos de Cundinamarca, Santander, Antioquia, Caldas, Huila, Valle del Cauca. Resultados: Colombia se encuentra en una estructuración para la implementación de la Historia Clínica Electrónica Unificada -HCEU-. Actualmente, se encuentra en unificación en 42 IPSs públicas en el departamento de Cundinamarca, el desarrollo de la HCEU en el país es privado y de desarrollo propio debido a las necesidades particulares de cada IPS. Conclusiones: Se identificaron barreras humanas, financieras, legales, organizacionales, técnicas y profesionales en los departamentos entrevistados. Se identificó que la unificación de la HCE depende del acuerdo de voluntades entre las IPSs del sector público, privado, EPSs, y el Gobierno Nacional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de la tesis es identificar una familia de argumentos que comparten una estructura con el principio de dualidad de la geometría proyectiva. Esta familia la denomino "argumentos duales". Para lograr este objetivo, tomo cuatro argumentos importantes de la filosofía analítica e identifico en ellos la estructura que comparten. Los cuatro argumentos son: (i) el acertijo de la inducción de Goodman; (ii) la indeterminación de la referencia Putnam; (iii) la indeterminación de la traducción de Quine; (iv) la paradoja del seguimiento de reglas de Wittgenstein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente investigación tuvo como objetivo describir las representaciones sociales de un grupo de estudiantes del área de la salud frente a los excombatientes de grupos armados al margen de la ley en Colombia y frente a los procesos de reintegración. El estudio es cualitativo, desde un enfoque procesual de la teoría de las representaciones sociales, participaron estudiantes del área de la salud de una universidad privada de la ciudad de Bogotá. Los datos fueron recogidos mediante un ejercicio de asociación libre para conocer el componente semántico de las representaciones y una entrevista semiestructurada de forma individual con el fin de identificar las dimensiones de información, actitud y campo representacional. Se encontró la prevalencia de prejuicios hacia los excombatientes y la influencia de los medios de comunicación en el nivel y calidad de la información sobre estos objetos de representación, y se identificó una ambigüedad frente al proceso de reintegración; lo que de alguna forma sugiere las dificultades para la inclusión de este grupo a la sociedad, la presencia de una discriminación negativa y las bajas expectativas frente a procesos de cambio en el marco del proceso de paz.